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Section One

INTRODUCTION

This dissertation comprises a number of distinct essays linked by

a common theme. The common theme is that all the sections of the dis-

sertation deal with one aspect or another of the theory of individual

choice behavior. Section Two focuses on choices involving time; Sec-

tion Three focuses on how information affects -hoices involvin; uncer-

tainty. The final section, 'ection Four, reports on some empirical

studies relating to the theoretiial developments of the preceding two

sections. While there is a common theme to the dissertation the in-

dividual sections reflect a considerable diversity. This is due in

Lrrge part to the inherent diversity of the subject matter. Disci-

plines ranging as broadly as statistics, psychology, philosophy, and

economics are concerned in one way or another with aspects of the

theory of individual choice behavior. The studies reported h,-e re-

flect the diversity of these disciplinary viewpoints; ne~erth.-less,

there is some emphasis on relating the problems considered to economic

situations.

I would like to begin these introductory comments by providing a

classification of alternative ways of looking at individual choice

behavior. Many such classifications are possible; .uce and Suppes (61,

for example, dlcotMize theories of individual choice behavior In three

separate ways. rhe first way is whether or not the theory uses alge-

braic or probabilistc tools. The second way is whether or .iot the

decision,. the individuals are faced with involve unc% rta nt v or not,
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and the third way is whether or not the theories provide a complete

ranking of all the alternatives available to the individual or merely

specify which alternative he will select (or the probability that he

will select each alternative). With three two-way splits they come up

with a possible eight-way classification of theories--though a number

of these boxes are not filled. The classification that I would pro-

pose is somewhat different. First T iwould distinguish bptweeu normative

and descriptive theories; this corresponds in a rough way to Luce and

Suppes' distinction between algebraic and probabilistic theories. The

second distinction I would make is again concerned with certainty ver-

sus uncertainty though I would make thiz a thrce-way distinction. Thp

first would be decisions under certainty, the second would be decisions

under uncertainty with no opportunity to utilize information and third

are decisions under uncertainty that do involve the opportunity to uti-

lize information. The final distinction that I would make, ::n-1 rhis is

of particular relevance to economists, is that between choices involv-

ing time and those that Jo not. With two two-way class if icat ions and

one three-way classification I thus come up with A total of 12 alter-

native boxes into which theories of individual choice behavior can be

put. It is not my intention to pursue this classificatit.:n in detail

blit merely to state it here at the outset to place things in sorm per-

spect ive.

I would like now to indicate in a very brief way .1 number of the

areas in which theories now exist concerning individual choice behav-

ior. By far the best 3eveloped theory within economics is that of

individual choice behavior under certainty when the ba:sic constraints



are those determined by prices and income. The keystone of this theory

is the theory of consumer demand first developed by E. Slutsky and J. Z

Hicks. Another important area for economics is, as mentioned, the

theory of choice involving time. The work of Fisher in this area is

generally considered seminal and is discussed further in Section Two

of this dissertation.

.licrt are quite a number of alternative theories for choice under

uncertaintv having no information component. Axioms characterizing

most ot these theories--under the provision that uncertainty be in some

sense "total"--are succinctly summarized in Milnor's [17] well known

paper. T-he normative thieory of choice under uncertainty involving no

information component that is now increasingly accepted, and the one

that I personally accept, was first sketched by Frank Ramsey [8] and

developed with axiomati- care by L. J. Savage [101. It is proved that

if individuals act in accord with the axioms oil thiq theory they act

as though they were maxirnizing the expectation of a utility func tion

against a unique Subjective probability distribution. V'on Neumann

and Morgenstern (1-] provided the key prooft of thle existence of thle

utility function, though under the assuur-iption that the probabilities

of thle everits were exogenously given.

In psychology, as one would expect, the emphas is has been mum.h

more on descriptive rathe! than normative theories though there f4-

ten a deIbI e ra te t enden c t o un de rmine t. hI s d i,,t Inc t ion bw s uc- ps Y-

~hologists as; Luco Mnd Suppes .A good deal of p-,ycho log'; has, dealt

with tiieories of in format ion uisage, that is, how peop to PrOcess in for-

mation in order to reduce uncertainty or chanize the qrate of th'-ir

beliefs. it is easy to diqcerrn tw,- main trends In -, svc' ooical
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literature that deals with this in a somewhat formal way. The first

of these trends is in a school led by Ward Edwards at the University

of Michigan; their work has focused on studies of how Bayes' theorem

is used by subjects in actual information processing tasks to update

their beliefs. A general conclusion is that subjects move in the di-

rection that the normative theory would have them move but not far

enough--that is, they act as degraded Bayesian information processors.

A quite ditfl.-ent school in psychology is much more in the tradition

of the stimulus response theories first developed early in the century.

These psychologists view learning as a Markov process, generally, though

there are a number of alternatives and extensions to this way of looking

at learning. Psychologists now working in this field base much of their

work on early papers by W. K. Estes (see, for example [2]) and the book

by Bush and Mosteller [1].

Another tendency in psychology has been to attempt to formulate

descriptive (usually probabilistic) theories of choice under both cer-

tainty and uncertainty. A number of these theories were first put for-

waid by Luce [4] and a variety of theories of this sort--including some

developed by economists--are reviewed in detail by Luce and Suppe. [6].

A feature of most of these theories is some sort of attempt to deal with

observed intransitivities in actual choices. One way of handling this

is to assign numbers (usually called "response strengths") to each al-

ternative; the probability of making any particular choice is, then,

proportional to its response strength. Another way of handling this

problem is to use semiorders rather than weak orders on the underlying

preference space; Roberts [9] discusses the relations between these two

approaches.
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There is one further class of studies concerning the theory of

individual choice behavior that I should add at this point. It does

not fit into one of the twelve boxes that I described previously since

it is much more concerned with the methodology of this type of study

than any particular study itself. These studies concerned the nature

of measurement and theory construction in general. An important re-

viev paper concerning the theory of measurements upon which many of

the mathematically oriented psychological studies are based is that

of Suppes and Zinnes [il]. In his paper entitled "On the Possible

Psychophysical Laws," R. D. Luce [3) characterizes the class of func-

tional forms that are meaningful when relating scale types of different

stzengths to one another through empirical laws. In a later paper

(Luce [5]) he extends this initial work.

In the preceding paragraphs I have attempted to give the barest

of thumbnail sketches of which of the boxes of alternative theories

of individual choice behavior have been worked on. In the remainder

of this introduction I will give an overview of where the results re-

ported in this dissertation fit into that schema.

Section Two of this dissertation deals with choices involving

time. Empirical work concerning how people do in fact make choices

involving time has been the province of both psychologistis and econ-

omists. Economists have attempted to empirically estimate consumption

functions and psychologists have attempted to look at a number of fac-

tors that influence an individual's willingness to delay gratification.

In Part Two/One there is a relatively brief overview of some of the

psychological results. In Part Two/Two I have attempted to provide
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a theory of choice invclving time but no uncertainty. The theory de-

veloped there rests on the observation that any discounting procedure

acts very much as a weighting procedure for utilities that is quite

analogous to the weighting procedure provided by subjective probabil-

ities. Thus an axiomatic system such as Savage's [101 provides a for-

mal basis for a theory of choice involving time but no uncertainty.

In Part Two/Two, then, the Savage axioms are reinterpreted in a tem-

poral context and the meaning of the theorems for choice involving

time is stated. The crucial independence assumption that is required

to obtain the numerical representation is discussed and it is pointed

out that this independence axiom is much less plausible for the inter-

temporal context than it is in the uncertainty context. The relation-

ship of the results obtained in Part Two/Two are then discussed in

comparison to results previously obtained.

In Part Two/Three I attempt to outline an axioma-ic framework for

choices that involve both time and uncertainty. The results obtained

there are rather limited and of two sorts. First, I look at choices

involving triples of the following form: (a, e, t,). Here a is in-

tended to be a prize of some sort, perhaps an amount of money, e is

an uncertain event upon which it is conditional, and t is the time at

which it occurs. An example of such a triple would be the promise to

receive one thousand dollars in 1980 if Nixon is not reelected in 1972.

By extending some work of Tversky [12] I prove that choice among tri-

ples of the sort lust described can be shown to be reflected by dis-

counted expected utilities under rather plausible assumptions. However,

these assumptions are not sufficient to guarantee that the probability
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weights attached to the random events form a probability measure over

the space of possible ev!nts. I next state axioms concerning the more

general intE,-temporal choice problem under uncertainty from which I

conjecture that uoth a discount function and a subjective probability

measure can be derived.

Section Three of the dissertation deals with the relationship

between information and choice. Part Three/One is an essentially

normative study and Part Three/Two primarily descriptive, In Part

Three/One what I attempt to do is show how a thoroughly subjectivistic

concept of Probability can be used to encompass the inductive logics 'N

developed by Carnap and 4intikka. This is done by showing that the

inductive systems proposed by them can be shown to be special cases

of a properly formulated subjectivistic theory of induction based in

a straightforward way on Bayes' theorem.

Part Three/Two deals with statistical theories of learning of a

thoroughly descriptive sort. A broad range of theories of learning

is surveyed and many of the theories surveyed are considerably gen-

eralized. The most important generalization is t3 allow for much

richer structures to be placed on the set of reinforcing c.ents--

thereby bringing the theory in an important way much closer to prac-

tical reality. Most of the theories of learning that are developed

in that part are also developed there for the situation when there is

a continuum of response alternatives. This case is of particular rel-

evance to economics as most price and quantity decisions are of just

this sort. A number of these theories could be tested in simulated

economic situations by analyzing the data that Professor M. Shubik
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hopes to obtain from his computer based economics of imperfect com-

petition course series. The closing pages of Part Three/Two suggest

a general framework within which problems of learning and inference

can be discussed.

Section Four of the dissertation comprises a number of empirical

studies related to the issues brought up in Section Three. Part Four/

One is an attempt to determine the actual structure of a subject's

beliefs under circumstances of "ttal" uncertainty. Essentially, a

subject is asked to specify his prior distribution for an unknown

probability when he is given no information concerning that probabil-

ity. These prior distributions are obtained for a number of different

numbers of states of the world. Part Four/Two reports on an experi-

ment performed on computer terminals at Stanford University to test

theories of paired-associate learning that attempt to describe com-

plicated structure placed on the set of reinforcing events. The task

set the subjects .-as sufficiently simple so that subjects were able

to approach In their performance what would be predicted by a rather

complicated normative model; curves showing the actual versus normative

perfor..Jnce of the subject are presented for a wide variety of con-

eitions. In Par Four/Three an attempt is made to investigate infor-

mation seeking behavior of a particularly simple sort for subjects.

Even in the very simple case presented there, however, a normative

model of optimal decisions concerning whether or not to acquire infor-

mation is somewhat difficult to obtain. In contrast to the results

of Part Four/Two, it turns out that subjects' behavior is not partic-

ularly well predicted by a normative model; nevertheless, there is
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I
some increased tendency for subjects to acquire information when the

value of doing so is high.

The studies reported in more detail in what follows represent,

then, a somewhat heterogenous collection of essays concerning one as-

pect or another of the theory of individual choice behavior. Studies

reported are normative and descriptive, empirical and theoretical, and

both psychological and econ&.ic. It would be nice to report that un-

derneath this heterogeneity there is an underlying unity aside from

that of general subject matter. I fear, :iowever, that there is no

such unity; my approach is more that of the fox than the hedgehog.

Ii

Ii-t

Ini
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Section Two

CHOICES INVOLVING TIME

If we classify any decision an individual must make according to,

first, whether or not it involves time and, second, whether or not it

involves uncertainty, each decision will fall within one of four pos-

sible categories :

1. Decisions having certain outcomes and no time element,

2. Decisions having uncertain outcomes and no time element,

3. Decisions having certain outcomes that involve time, or 4

4. Decisions having uncertain outcomes that involve time.

The theory of consumer demand traditionally deals with situation

i. The four or five postualtes for "rational" behavior under these

4circumstances imply the existence of a utility function defined on the

set of outcones (and unique u? to an increasing monntonic transforma-

tion); the individual chooses as though he were maximizing utility

according to this function, subject to a budget constraint.

The opcimal procedure in situation 2 is presently a matter of

controversy. It is the author's belief that the axiom system of

Savage [28] (perhaps including modifications of Luce and Krantz )

gives the clearest notion of r,tionalitv for decisions under uncer-

tainty. These axioms state conditions on an individual's preferences

w ich imply that he acts as though he were maximizing expected utility

against a unique probability distribution over the states of nature.

a

R. D. Luce and D. Krantz, "Conditional Expected Utility," Wn-

published manuscript.
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The utility function that is shown to exist is unique up to a positive

linear transformation.

This Section is concerned with the analysi- of situations 3 and

4. There appears to be a strong formal similarit; between decisions

under uncertainty that have no temporal element and decisions that do

have a temporal element but involve no uncertainty. This similarity

is used to analyze situation 3; the intuitive basis for the similarity

is as follows; L-ilities are calibrated in stronger-than-ordinal terms

by use of probabilities in the Savage theory, following the work of

Ramsey [26] and von Neumann and Morgenstern [351. Consider three out-

comes, a, b, and c; and assume that a is preferred to b, ;nd b to c.

Now assump that receiving b with certainty is indifferent to receiving

a with some probability p, and c with probability I - p. The magnitude

of p is, then, an index of how close in utility b is to a, relative to

how close c is to a. This observation is central to the development

of cardinal utility theory.

A similar intuitive construction can be made for decisions in-

volving time, but not uncertainty. Let a be preferred to b, k.nd assume

that the individual has a r'' ¢." .': i.e., f

prefers to advance the consumption of relatively desir:ble commodities.

Though the individual prefers a to b, it is reasonable to assume that

there exists a time t* such that he would prefer reco'vinR h now to

receiving a at a time further than t* in the future. 'That the minimum

value of t* 19 will depend both on how strongly the individual prefers

a to b and on the magnitude of his rate of time preference. l.ike know-

ing probabilities, knowing the magnitude of the individual's rate of F

t!
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time preference would enable us to calibrate cardinal utilities. The

probZlem 1r to separate out the effect on choice of time preference

from that of utility.

In Part Two/Two of this dissertation the arguments outlined in

I
the preceding paragraph are treated more formally to provide a theory

cf decisions involving time but no uncertainty. Part Two/Three com-

prises an initial attempt to extend this analysis in a way that ac-

counts foc uncertainty.

Before turning to that formal analysis, however, I summarize a

number of empirical studies reported in the psychological literature

concerning how individuals actually do make choiceE involving time.

These studies contain minimal theoretical development (at least of a

formal sort) and thus contrast with the primarily theoretical develop-

ment of economists. The results of these studies suggest, moreover,

that there are a variety of determinants of inter-temporal choice be-

havior little considered 1v economists. I wi!l further discus- one or

two of these probler for economic theory while summarizing the psv

chological results in Part Tue/One.

I, "

j
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Part Two/One

PSYCHOLOGICAL STUDIES OF CHOICE INVOLVIMG TIME

Over the last 10 years or so a number of psychologists have been

studying how people make choices involving time. The central theme of

research in this particular area has concerned the determinants of an

individual's willingness to choose a smaller immediate reward over a

larger later reward. In this part of my dissertation I will review

some of the findings of this school of research, then, in the second

section of this part, look at some of the determinants of willingness

to delay gratification. Finally I sketch very briefly an experiment

that I hope to perform at some later time to look into more detail

at methods of obtaining a quantitative measure of time preference.

i. WILLINGNESS TO DELAY GRATIFICATION AND PUNISHMENT

Professor Walter Mischel of the Stanford Psychology Department has

been the researcher most interested in examining people's willingness

to delay gratification and reward. He has ieen publishing papers tn

this general area since the late 1950s; however, I will in this part

review only some of his most recrt work which, by and large, super-

sedes that done previously. After reviewing three papers of his I

will discuss briefly sowe of the irplications o! those findings for

the type of ec.noic theory of utility and time preference discussed

in Part Two/Two.

Hischel 1201 provides a fairly extensive survey of the work done

in this area prior to 1966. Onie rather systematic -arly finding is
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that the likelihood that the subject choose an early smaller reward

over a delayed but larger reward decreases as the time interval in-

creases before receiving the larger delayed reward. They further found

that will~ngnes,; to delay gratification for a later reward depends on -

the relative magnitudes of the two rewards involved, very much as one

would intuitively expect. The bulk of this paper by Mischel is dedi-

cated to reporting results of five experiments that he and his co-workers

bad performed over the preceding several years.

In their first study they examined the effects of making attain-

ment of the larger, later reward cr-'ingent on successful performance

of an intermediate task. They found, not surprisingly, that the more

successful people had been in previously given similar tasks the more

likely it was that they be willing to delay for larger reward. Also,
f

su.jects with a fairly low level of self-confidence were rather more

apt to take immediate but lower rewards. Unfortunately, however, for

the purpose of studying the effects of pure time prefereice the extra- j
neous variables in this experiment--uncertainty about successful corn-

pletion of a task and the potential disutility of actually performing

it--considerably confused the picture. Neverthe!ess the direction of

the effects is very much as one would inv.itively predict.

A second claqs of experiments looked at how uncertainty concern-

ing whethcr or not the later reward would actually be attained affecteu

willlingnes t, delay gratification. This same sort of effect is ex-

amined 4n i:ore detail in later experiments reported in Mischel and

C.usec[ F21).

V,• $
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Once again findings were very much as one would intuitively hope.

Increasing the probability that a subject would in fact obtain a later

but larger reward resulted in an increased likelihood the subject would

choose that option. The theoretical formulations concerning the rea-

sons for the existence of impatience employed by MJsLhel and his co-

workers at this time was primarily centered around this uncertainty

aspect; the lesser probability of in fact attaining more distant re-

wards was -onstrued as the primary reason for choosing smaller imme-

diate gratification. This study reports, however, no attempt to

quantify attitudes towards time preference or uncertainty nor does it

attempt to look at trade-offs between time preference and uncertainty.

A third class of experiments reported in this major article by

Mischel looked at attempts to modify subjects' willingness to choose

delayed gratifications. They were abj to obtain rather large modifi-

cations in willingness to delay rewards witi both live aul symbolic

models of rather different behavior. (In the symbolic models the sub-

jects were simply told about the behavior of others who had to make

choices involving time.) The fourth and fifth experiments reported

in this survey by Mischel concerned how various forms of behavior of

models and characteristics of models influenced other aspects of a

subject's behavior than that of choice involving time.

As previously mentioned the primary reason ascribed by Mischel

and his co-workers for the existence of time preference was uncer-

tainty. They held this view through probably 1967 and many of the

experiments performed up to that time had uncertain later rewards as

well as other intervening variables mixed into the experiments in a
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way that confused the interpretation and the results somewhat. In a

very recently reported study by Mischei, Grusec, and Masters [221 the

existence of pure time preference is given a more central role and

they designed a set of experiments to look at just that effect. Again

their qualitative results are that the more a reward is delayed the

less likely it is to be chosen over a smaller immediate reward. How-

ever, there is one other aspect of their work that extends some of the

results reported in Mischel and Grusec and that is of considerable

importance here. That is that they also looked at individual's willing-

ness to delay punishments. The results they find here are rather in-

consistent with a theory of inter-temporal choice based on discounting

future utilities or disutilities. First, among adult subjects, they

find that the length of delay time does not affect willingness to put

off punishment; adults in general preferred immediate punishment to

more delayed ones no matter what the length of the time interval. For

children, on the other hand, there seems to be no systematic relation-

ship between temporal considerations and punishment. Sometimes they

will choose the delayed punishment, sometimes not. Apparently these

studies by Mischel and his co-workers are the first that look in any

detail at punishment and its effect on temporal choice if the time

intervals are of any length. They do discuss some previous results,

however, for very short time interval delays of punishment. For ex-

ample, they mention a study of Cook and Barnes [2] in which adults

were allowed to choose how long to delay an inevitable small shock.

The delay times available for choice were only on the order of frac-

tions of a minute. Almost invariably in these circumstances adults

chose an immediate shock rather than delaying it.
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There are a number of things about these findings that are unset-

tling for economic theory. First, and in a sense more minor, there

are a number of exogenous seeming factors that do influence choice be-

havior under these circumstances. For example, a subject who has just

received a reward is more willing to undergo immediate punishment than

he would otherwise be. Also, subjects behavior is somewhat easily

modified by observation of alternative behaviors. In addition there

was some evidence that the order in which subjects made a number of

choices involving time would affect the outcome of his choices.

However, what I think is the most fundamental difficulty posed by

these results, is that subjects do seem to behave very differently with

respect to d Laying rewards than they do with respect to delaying pun-

ishments. This seems to me to pose a very fundamental difficulty for

the theory of utility and time preference that is formally sketched in

Part Two/Two of this dissertation. According to the theory presented

there subjects with a positive rate of time preference should prefer

to delay punishment as much as possible. This follows from the impliciL

assumption that the point events that are studied in these experiments

represent simply reversals of two events within a time stream. That

is, there is the event of doing nothing and there is also the event of,

say, receiving a small shock and these two events are reversed in the

time stream. Since the utility of doing nothing is higher than that

of receiving a small shock, according to the standard utility analysis,

anyone with a positive rate of time preference would wish to delay the

shock as much as possible. Yet this is not observed. What this sug-

gests is that there is some sort of natural zero to the utility level,
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a result inconsistent with the general economists result of utility

being unique only up to a positive linear transformation. For with

the positive linear transformation there is, of course, no natural

zero level. The critical result is that the behavior of the subject

concerning events that have a utility below the zero level is quali- I
tatively differs from his behavior concerning events having a utility

above that zero level.

One intuitive way to look at this sort of thing is to assume that

any particular event does not have utility simply at the time that it

occurs which is then discounted back to a present time in order for a

person to make a decision. Rather, any event generates a time stream

of utility and each portion of that time str am is discounted to the

present. The cause of this time stream of utility is a memory of past

events and anticipation of future ones. (This way of looking at past

events having an influence on present utility is rather different than

that advanced by Charles Wolf in a recent paper. Wolf [37] is primar-

ily concerned with looking at how our past commitments and actionr can

influence the utility of what we do now. What I am suggesting here,

on the other hand, is simply that we continue to enjoy now the memories

of pleasant past events and occasionally to blush over past mistakes.)

If we do assume that events cause these utility streams in time,

then, given that there is some sorL _ural zero to our utility

function, we can postulate rather different time streams for those

events with positive from those with negative utility. Intuitively I

expect two sorts of things. First, people will tend to more readily

forget unpleasant events than pleasant ones. Tlus the disutility ofIII
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a stream resulting from an unpleasant event we would expect to fall

off more rapidly than the utility stream generated by a pleasant event

of the same absolute magnitude in some sense. Second, future unpleas-

ant events tend to cause, I intuitively feel, more present fear and

anxiety than do future pleasant events cause prescnt pleasure of an-

ticipation. Thus, the disutility stream of a future unpleasant event

should rise more rapidly than does the utility stream of a future

pleasant event.

What would be desirable would be to represent these utility dis-

tributions by functions having their mode at the time of occurrence

of the event in question and that distribute the utility from the event

over an interval of time. Further, that distribution should be skewed

toward the present for undesirable events and more toward the past for

desirable events. Clearly, however, a good deal more of both theo-

retical and empirical work needs to be done in order to make much prog-

ress with these notions.

II. FACTORS INFLUENCING AN INDIVIDUAL'S CAPACITY TO DEFER GRATIFICATION

Let me begin by quoting the introspective and somewhat value laden

but interesting comments of Irving Fisher concerning the determinants

of impatience among individuals. On Page 89 of The heory of Interest,

Fisher [6] asserts:

Impatience for income, therefore, depends for each individual on
his income, on its size, time shape, and probability; but the
particular form of this dependence differs according to the var-
ious characteristics of the individual. The characteristics which
will tend to make his impatience great are: (I, short-sightedness,
(2) a weak will, (3) the habit of spending freely, (4) emphasis
upon the shortness and uncertainty of his life, (5) selfishness,
or the absence of any desire to provide for his survivors, (6)



-21-

slavish following of the whims of fashion. The reverse conditions
will tend to lessen his impatience; namely, (1) a high degree of
foresight, which enables him to give to the future such attention
as iL deserves; (2) a high degree of self control, which enables
him to abstain from present real income in order to increase fu-
ture real income; (3) the habit of thrift; (4) emphasis upon the
expectation of a long life; (5) the possession of a family and a

high regard for their welfare after his death; (6) the indepen-
dence to maintain a proper balance between outgo and income re-
gardless of Mrs. Grundy and the high-powered salesmen of devices
that are useless or harmful, or which commit the purchaser beyond
his income prospects.

There appears to be little evidence available at the I "esent time

in the psychological literature to either substantiate or refute most

of the suggestions that Fisher makes, though there does exist specula-

tion even in early psychoanalytic literature--see Brenner [1, 50-52].

However, concerning two potential determinants of willingness to save

there is some evidence, although not always clear-cut in its resultj.

The two areas for which there does exist evidence concern the rela-

tionship of "achievement motivation" to willingness to postpone grati-

fication and the relationship of socio-economic class to this.

I have been able to find two studies that relate socio-economic

class to willingness to postpone gratification. The first, reported

by Cameron and storm [IA], looked a. achievement motivation and income

in middle and working class Canadian Indian children. They found that

a middle class child was more likely than India or working class

children of the same age to prefer large delayed rewards to smaller

immediate ones. In a rather more substantial study, however, Straus

[29] obtained different results. He tested willingness to defer grati-

fication in a population of over three hundred male high school students.

One of the three hypotheses that he was testing was: "the higher the

socio-economic level, the greater the tendency to defer gratification."
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Straus was unable to find any evidence to support the hypothesis that

there is a positive correlation between socio-economic status and will-

ingness to defer gratification.

A good fraction of the psychologists involved in study of willing-

ness to defer gratification have worked under the influence of the group

of psychologists currently studying "achievement motivation". In a re-

cent brief survey textbook entitled Motivation and Emotion, Murray [23]

ists five broad classes of human motivations, such as sex, hunger, and

thirst, etc. One of these classes was social motivations; under that

class he lists twenty different types of social motivations. One of

these twenty is achievement motivation, or need for achievemei.t; this

particular type of motivation has been much popularized by the wide

success of the book entitled The Achieving Society, by David McClelland

[19]. McClelland's thesis is that when a reasonably large number of

people in a society for some reason or another acquire a large need for

achievement, then things begin to happen in that society--particularly

entrepreneurial activity leading to economic growth. McClelland's ar-

guments have been rather vigorously challenged in some of the economic

journals, although, I think, there is general agreement that his focus-

ing on the motivations of individuals within the society leads to an

important way of looking at the determinants of economic growth. On

the other hand, a number of the psychological premises behind his work

have remained relatively unchallenged; in particular, s focusing al-

most exclusively on achievement motivation to the exclusion of a tre-

mendous variety of other possible motivations and his failure to look

at the correlations among motivations must be counted as a serious
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shortcoming in his work. It is sufficient to note here, however, that

one of the results of his book has been to stimulate a good deal of

research concerning the attitudes of people with high levels of achieve-

ment motivation toward delay of gratification. On Pages 324 through

329 McClelland summarizes some ot' his results concerning attitudes to-

ward time of people with high achievement motivation and a mare up-to-

date summary of some of these results may be found on Pages 41 through

45 of Heckhausen [7]. Three separate studies cited by Heckhausen sup-

port the notion that measures of achievement motivation are positively

correlated with willingness to defer gratification. This result is

also borne out by the previously cited paper of Straus [29]. The third

of the hypotheses that he was testing was "the greater the tendency to

defer gratification, the higher the performance on two measures of the

'achievement syndrone'." He found some evidence to support this hy-

pothesis and concludes hi paper with the following comment: "Learning

to defer need gratification seems to be associated with achievement at

all levels of the status hierarchy represented in this sample, and

hence can probably lest be interpreted as one of the personality pre-

requisites for achievement roles in contemporary American society."

1 think that these results must be considered primarily as qualitative

tendencies of association rather than any explicit precise correlational

findings. One reason for this is the essentially ordinal nature of

measures of achievement motivation.

* This concludes my comments on work that has been previously done

by psychologists measuring time preference and relating it to various

characteristics of Individuals. In the work thit I have read so far
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by these psychologists I have seen no reference at all to the rather

extensive economic literature concerning time preference nor any ser-

ious attempt to formulate explicit quantitative models of the phenomena

being investigated. It does seem to me that some interesting experi-

mental results could be obtained by designing experiments in terms of

the theoretical structure developed in the next section of this paper

and the experimental tethniques utilized by Tversky [32, 331 in the

formally very similar problem of measuring subjective probabilities.

What I would hope to do in these experiments is, first, demonstrate a

capability to provide a relatively clear quantitative measure of time

preference, and, second, to attempt to --elate this measure in some

systematic way to various personality and socio-economic variables

associated with the individual. )ne question that will have to be

investigated is whether or not an individual's time preference can be

represented by a single rate--necessarily assumed to be constant--or

whether some vector of numbers will be needed to describe his dis-

counting pattern for different time intervals. To measure personality

characteristics I would plan to wo-'k in collaboration with Professor

Andrew Comrey of UCLA who has developed over the last ten years a

rither comprehensive personality inventory. Questtonnnires would be

used and selective sampling techniques to gain the socio-economic back-

ground information and to select the appropriate pGpulations to obtain

that information from.
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Part Two/Two

FORMAL THEORY OF DECISIONS UNDER CERTAINTY INVOLVING TIME

I. THE AXIOMS OF THE THEORY

Because of the similarity between the problem considered here and

that of decisions under uncertainty, Savage's axioms [231 are reinter-

preted in this conte xt below.

The basic subject matter of the theory is the following:

I. The set F of all points in time fro-, some initi,! time into

the fucure,

2. A set T of tze perzods which are subsets of F such that F F

T; f T: if t T, then F - t T; and if tit t J T, then

t ) t. c T and t. \ t. T,

3. A set X of ':seq4&'x:us whose elements are commodity vectors,

4. A set D of > ':'x:', each of which is a funct ion from F into

X (D is assumed to include ill .':': decisions, i.e., de-

cis ions such that for some x and for all t F, d(t) - x.) and

5. A relation - on the set D.

The notation d < e is intrpreted as "d is not preferred to ,.

If d < e and e d, then the two decisions will be said to be indil-

ferent, denoted d-- e. If d- e, and not d- e, then e will be said

to 6e strictly preferred to d. U':oted d < c. Thte sy'mbol . r

defined in the obvious way.

The axionz, listed below, are described on pp. 2:anid 2S.

Axiom 1. !.r i' d, 4-, f d e :'e e f d - f.

e, i, De f:r f ,.
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Consider a time period B in T. A decision d is said to "agree"

with e during B if d(t) = e(t) for all t c B.

Axiom 2. If B c T and if for d, e, d', e' E D, the folowi ng

hoZd:

1. In F - B, d agrees with e ad d' agrees with e'

2. in B, d agrees with d' and e agrees with e'

3. d< e

then d' e'.

Several new notions must now be introduced. If decisions d and

e are modified so as to agree in F - B (i.e., except during B) and if,

after modification, d < e, then d < e during B. (This definition is

legitimate by Axiom 2; that is, it does not matter what d and e are

modified to during F - B.) A time period B will be said to be :rrc -

,:'ayz if for all d, e, - D, d - e during B. A preference relation <

on tOe set of con;equences X can be defined in term-, of - in the fol-

lowing way: If xi, x X, then x.- <  x. if and only if for constant

decisions d. and d. such that, for all t, d i(t x and d (t) x

thee d -" d

Axiom 3. . B, d(t) x p:: d',t) x', : '

Axiom . f, ' , g, g' X; A, B T; f , f g gB

A A

f A(0) f', g A(t) ' " . r , F - A

I. f (t) f. R

f t - f , t f r t F - B
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4. f A f fB

then g A g B'

Axiom 5. For some x, x' E X, x < x'.

A temporal partition is a subset T* of T such that for every t E

F there is exactly one t i E T* such that t c Ti. A reauiar terporal .:

partitio;q is a temporal parcition T** such that the time periods in T**

are intervals and of equal length.

Axiom 6. Suppose x E X and d, e E D Oith d .< e. There exists a

temporal partition ch that i. d or e is modified on any time period

of the partittcn co take the vaZue x for all t in that t: me neriod,

other time perz'ods being wudisturbed, then the modified d remains infe-

rior to e, or d remaLns inferisr to the modif'ied e, as the case may !.e.

These, then are the axioms of the theory. Axiom 1 is the obviously

necessary requirement that < be a weak order. Axiom 2 is the "sure-

thing principle" in the context of decision ur ier ,ncertainty; here it

acts: as a rather strong indepe idence asrumptioc. (Axiom 2 is discussed

in more detail in Section VI.) Axiom 3 simply states that if onc con-

-equcnce is inferior to another and two decisions are everywhere idca-

ti.?al except during one relevant tirme period such that during that time

period, the first deci si ti has the inferior consequence and the second

the superior one, then the first decision is i .ferior to t ne seco,d

one.

Axiom 4 makes poss ib Ie an order ing .t:tong t i M perik; " -: B"

cwn he read "A is more discounted than R." Considei tw, conso e neilk'Ps

x and v .uch tmat x is definitelv preferred to x. It d ,e a decision
ut

"such that x is tie result ditting A mid ' is thc. reoilt ,huring: F A,
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d is similarly defined. If A and B are time periods of equal length,dB

with A being in the near future and B in the far future, and the in-

dividual has a positive rate of time preference, then we would expect

dB -< dA ' Ur if A and B were at about the same time but B was consid-

erably shorter than A, we would expect dB < d . Assume that if for

one x and y pair y <c x implies dB < dA; then for all x and y such

that y <, x, dB < d . We would then be justified in defining < in

the followinc way: B < A if and only if dB < d. Axiom 4 asserts

this invariance of the ordering < with respect to the x and y chosen.

Axiom 5 is simply an assumption of nontriviality; only Buridan's

ass would have difficulty were Axiom 5 to fail.

Axiom 6 is an assumption that temporal partitions can be made

exceedingly fine.

iS
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!I. THE PRINCIPAL THEOREMS

The principal theorems of Part Two/Two follow directly from

reinterpretation of theorems in Ref. 28. Hence, proofs will be out-

lined only very briefly here. All of these theorems assume Axioms 1

through 6.

Theorem 1. There exists a unique real-valued function 6 defined

on T such that if A, 3 F T:

1. 6 (A) s 6(s) if' and only if A.< B,

2. If A is irrelevant, 6(A) 0

3. 6(F) = 1, and

4. If AA B = 0, 6(A V B) = 6(A) + 6(B)

The proof of this theorem rests on noting that .< acts like a qualita-

tive probability defined on T. Axiom 6 insures that this qualitative

probability is fine and tight; that in turn implies the existence of a

probability measure that strictly agrees with the qualitative probabil-

ity. This probability measure is interpreted here as the function 6.

The following corollary to Theorem 1 is perhaps more useful where

time preference is concerned.

Corollary 1. If T** is a regular temporal partition with elements

tl, t 2 , ..., arranged n order, then there exists a unique function A

defined on T** such that:

1. A(tl) = 1,

2. A(ti) < A(tj) if and only if t1 <o tj, and

3. A(t) <
i=l
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A function A satisfying conditions 1 through 3 will be called a

discount function. The proof of existence in Corollary 1 follows from

Theorem I and Axiom 6, which will give the countable additivity required

for part 3. The uniqueness follows from Theorem 1, establishing unique-

ness up to multiplication by a positive constant, and the normalization

of part 1.

There are a number of alternative axiomatizations for insuring that

a probability measure exists that strictly agrees with a qualitative

probability (see Fishburn [5]). However, it appears likely that apply-

ing those approaches to the time-preference problem would yield only

slightly different assumptions, under which essentially the same- con-

clusions would follow.

Let us now examine the existence of a utility function. A deci-

sion d will be defined as constant on a time period, A, if there exists

a consequence x E X such that d(t) = x for all t E A. From now on, we

shall consider only regular temporal partitions, T**, where the avail-

able decisions are constant on elements of the partition. It is clear

that if this is so, there is no ambiguity in writing d1 (t j ) if tj c T**.

A utility against A is a real-valued function U on X with the prop-

erty that if all di E D are constant on the elements t,, t2 , ... of T**,

and A is a discount function on T**, then for all di, d. E D the fol-J

lowing is true:

di d. if and only if A(t k ) U[d (tk A(t k ) U[d (tk01.

Theorem 2. if T** is a regular temporal partition, A is a dis-

count function on T**, and all decisions are constant on etements of
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T**, then Axioms Z through 6 imply that there exists a utility against

t

Theorem 3. If U is a utility against A, then U* is a utility

against A if and only if U* = aU + b, where b is any number and a is

any strictly positive number.tI

The present utilit of a decision d that is constant on the ele-

ments t1 , t 2 , ... , of a regular temporal partition is thus defined in I
the following way: '

PU(d) = A(t.) U[d(t.)],
j=l

given a discount function A and a utility U.

In summary, then, Axioms I to 6 suffice to prove the existence of

measures of time preference, A, and utility, U, such that one decision

is preferred to another if and only i its present utility is greater.

tTheorems 2 and 3 are proven in Ref. 28 and little altered there

from the original proof of von Neumann and Morgenstern [35].

>4
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III. ADDITIONAL RESULTS

This analysis has produced several additional results. Let us

first consider conditions that will insure a constant rate of time

preference. Here, a constant rate of discount defined on a regular

temporal partition T** means simply that if the elements of T** are,

in order, tl, t2, ... , then A has the property that A(t l) = A(ti )

for some constant a (necessarily < 1) and for i = 1, 2, .... If D is

a set of decisions constant on elements of a regular temporal parti-

tion T**, then the relation < on D is said to be stationary if when-

ever the elements d, e c D are such that d(tI) e(t I ) and d < e, then

the decisions d' and e' formed by deleting the first-period consequences

in d and e and advancing the other consequences by one time unit (e.g.,

d'(ti) = d(ti+l)) are such tht d'-< e'.

Theorem 4. If T** is a regular terporal partition, if the mem-

bers of D are constant on elements of T**, and if < is stationary, then

there is a constant rate of time preference.

The proof of Theorem 4 is analogous to a similar proof in Koop-

mans [10].

Another result from the theory of choice ulhder uncertainty that

can be applied to the intertemporal context is one due to Pfanzagl [24].

Let the elements of X be represented on a real continuum, e.g., the

values of x could be dollar-consumption income per unit time. Con-

sider a relation< on D that satisfies Axioms 1 through 6. For every

d c D, define d' = d + x for some x 0 X; that is, the value of every

alternative is being enhanced by, say, x dollars per unit time in

every time period. Pfanzagl's consistency principle asserts that the

tU
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preference relation on d' is the same as that on d: Adding a constant

to every time period of every decision in no way alters the preference

ordering among the decisions. In some ways a plausible assumption,

the consistency principle yields the following very restrictive re-

sult:

Theorem 5. If a choice structure satisfies Axioms 1 through 6

and Pfanzagl's consistency principle, and if X is an interval of a

real continuum, then U has one of the following two forms:

U(x) = ax + b

or

U(x) = aAx + b

where a, b, and A are constants with a # 0 and X > 0.

The import of Pfanzagl's result is illuminated by Krantz and

Tversky's [12] proof that the consistency principle is a consequence

of axioms concerning how adding to or subtracting from the outcomes

of decisions would affect the relative desirability of those deci-

sions.

LaValle [14] has generalized Pfanzagl's results to a situation

he calls multivariate constant risk aversion. If the elements of X

are indexed on a real continuum, and there are a finite (this could

be extended to denumerable) number of time periods, then LaValle's

results can be used to obtain (fairly restrictive) sufficient con-

ditions for < to be represented by a utility function of the form:

cd
e , or

PU(d) = cd, or

-cde
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where d is a vector whose components specify the amount received in

each time period, and c is a column vector with nonnegative components.

The present utility is unique up to a positive linear transformation.

ii
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IV. THE ASSUMPTION OF INDEPENDENCE

An assumption of independence is implied in Axioms 2 and 4, which

assert that there is no complementation or substitution across time

periods and that there can be no preference for variety for its own

sake. These assumptions are necessary both to obtain a measure of time

preference in the first place and to calibrate utilities, given the

discount function.

Some of the stronger disadvantages of these assumptions can be

avoided in the following ways: First, the elements of the consumption

set X may, as previously noted, be regarded as access to rather than

acquisition of commodities. For example, buying a new car and keeping

it for four years would be regorded in this scheme as access to a new

car the first year, a one-year-old car the second year, etc. This

approach avoids some aspects of material interdependence; nevertheless,

the possibility that consumption during one time period cpn affect the

utility of consumption in other time periods cannot be ruled out. The

problem of variety can be partly mitigated by allowing the components

of members of the set X to be mixtures of the form "in New York three-

fourths of the time, in Paris one-fourth." Extensive use of this ap-

proach would, however, make matters hopelessly unwieldy.

Economists traditionally favor nonrestrictive (i.e., weak) assump-

tions; as a consequence, they generally achieve weak results. To obtain

the fairly strong result that the effects of time preference and utilitf

may be separated and measured requires the strong assumption of inde-

pendence.
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How can this assumption be justified? As a descriptive assumption,

its advantage is that it yields a relatively tractable, testable theory.

However, both introspection and ca3ual observation of the phenomena of

complementation and substitution suggest that in many circumstances the

theory presented here will be at best only approximately valid. What-

ever descriptive value this theory may have can only be assessed in the

presence of data and alternative theories to account for those data;

therefore we should not rule out independence as an empirical assumption

that may be reasonably valid in some circumstances, invalid in others.

Can independence be justified as an assumption in creating a norm-

ative theory? Again, the answer is probably "yes" in many--but obvi-

ously not all--circumstances. Applied decision theory provides a body

of techniques that will assist decisionmakers faced with complex alter-

natives. Analyses such as this can then assist by breaking complicated

decisions into simpler ones--for example, by ignoring interdependencies

among time periods and discounting. It must be decided in each case

whether the conceptual clarification of the problem reczulting from the

abstraction gains more than the information ignored loses. The in-

creased utilization (and ad.jcacy) of present-value decision criteria

suggests that in many decision situations the simplification is worth-

while. However, aequming that independence will in many cases be only

an approximation sets this theory apart from that of Savage in an im-

portant way. In the uncertainty context, the independence assumption

has sufficient intuitive force that the Savage system may be considered

unconditionally normative; the time-preference interpretation can be

considered only approximately normative.
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V. DISCUSSION

The theory developed herein is related in various ways to other

theories of inter-temporal choice. Perhaps the best known anong econo-

mists is that of Fisher [6]. My work here abstracts away from

discussion of market and physical investment opportunities, all of

which are subsumed in the consumption streams available within the

set D. The present study adds to earlier work in its capability to

crisply separate pure time p eference from the utility of money, as

these variables enter into economic choice (a distinction which is

impossible to make precise within the approach of Fisher). This same

point is also the primary advantage of the present theory over a re-

cent axiomatic theory of Lancaster [13].

Samuelson [27] pointed out that if we assume that a decisionmaker

maximizes present value of utility and that he discounts "...in soi,

simple regular fashion that is known to us...," tln, by observtng

his actual choices, "...we shall be able to deduce the actual shape

of the utility function, invariant except for a linear transformation

The principal conceptual advance of the theory presented in

this dissertation over Samuelson's is that, instead of assuining the dis-

count function to be known, it is shown to be conjointlv measurable

with the utilit, function. Enzer [4] independently, but almost thirty

years later, obtained results very similar to those of Samuelson; the

See also Hirshlo¢fer's (8] extension of Fisher's theory.

This seems a rearkable observation to have been rade ten years
before The Aieory cf" JtZes ai:" : !,c :a: K'r, 2d ed.
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relationship between the present theory and those of Enzer and Samuelson

is discussed furtheic in Ref. 18.

Williams and Nassar [36] aL., Fishburn discus- ways of obtaining

discount factors without considering cardinal utility. Koopmans, Dia-

mond, and Williamson [ii place axioms o inter-temporal utility func-

tions that guarantee "impatience" and "time perspective" as properties

of the utility functions. However, their study does not involve axioms

concerning preferences that will insure the measurabilit., of time pref-

erence and utility. Koopmans [10] has recently extended his previous

work to consideration of axioms concerning preferences. Koopmans proves

a theorem that, essentially, guarantees the measurabilizy of time pref-

erence and utility. The principal difference between Koopmans' approach

and my approach is that by way of Axiom 6 1 am able to provide suf-

ficient fineness to the set of temporal -'irtitions to prove the ex-

istence of a discount function that strictly agrees with the qualita-

tive relation "is more di-counted than". Koopmans, on the other hand,

proceeds by adding what Lu • and Suppes [17] call a .'.'>. ' ...

."
: -in his case, the assumption of statio,.arit;--to guarantee

the existence of a strictly agreeing discount function. r" Fl .sati0:1-

aritv assumption is analogous (in the probability context), t> an as-

supt ion of equiprohable atomi.- ,vnts. This dissertation presents a

goneral approaci than that of Koopmans in that the rate. of discounit need

not be constant or, in the short run, even positlve,. (Cor.l larv I as-

sures -hat it is positive ir. the long run.) Another difference is that,

P. C. Fishburn, . ;, - " ." ':-,-::':;, unpublishd

-nanuscript.
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unlike the author, Koopmans assumes and uses a continuous structure on

the set X of outcomes.

It must be emphasized that the present work represents but a lim-

ited step in the direction of aderstanding choice involving time. The

problem of uncertainty, dicussed in aore detail in the next part, has

yet to be thoroughly resolved; and the interrelated problems of con-

sistency of choice and desire for flexibility in future choice also

remain. Axiom . (independence) should be further examined: Can an

interesting representation be proved if it is weakened? How can memory

and anticipation (both crucial to understanding Liter-temporal choice) I
be taken into account? To what extent is the type of theory presented

here intended to be descriptive? What are the psychological experiments

or economic observations that would support or refute it? And tc what

extent is this sort of theory suppc,ed to be normative, i.e., how can

it be profitably woven into the fabric of applied decision analysis?

These, then, are a few of tho questions that remain to be answere,!

through future research in this area. It is hoped that the theory pre-

sented here will provid a useful step tow. rd such solutions.V

*.

4

I
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Part Two/Three

FORMAL THEORY OF DECISIONS
UNDER UNCERTAINTY INVOLVING TIME

In this Part I attempt to extend the analysis of Part Two/Two to

situations where the options available to a decision--maker involve un-

certainty as well as time. My analysis hcre has two aspects. First

I look at a particularly simple class of intertemporal uncertain options

and prove a somewhat weak result concerning them. Next I state axioms

that I conjecture will suffice for the general case.

I. THE DISCOUNTED EXPECTED UTILITY MODEL FOR SIMPLE OPTIONS

Consic, a set A of prizes (e.g., amounts of money), a set E of

uncertain events, and a set T of future points in time. An "option"

is a set of triples of the form (a, e, t) with a F A, e ' E, and t

T. A "simple" option is an option containing only one triple. An

individual will be said to choose among options in accord with the

discounted expected utility (DEU) model if there exist real valued

functions u on A, p on E, and d on T such that one option is preferred

to another if and only if its DEU is greate:r. The DEU of an option is

Is the sum over all triples (a, e, t) in the option of the product

u(a)p(e)d(t).

My purpose in this section is to state a very simple theorem that

indicates when the DEU model holds for simple options. This result :i

a straightforward extension of some results of Tversky [33] concerning

what I would call simple options having no time component.
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Let 0 be the set of simple options, that is, 0 = A X E ) T. Let

P be a preference relation on 0; the structure (O,P) will be called

"additive" if there exist functions f on A, g on E, and h on T such

that for all oi, o. 0, o. P 0. - f(a.) + g(e.) + h(t.) > f(a.) +

g(e.) + h(t.), where oi = (a, t.), etc. The structure (0,P)

will be called Luce-Tukey (L-T) additive if it obeys the axioms of

Luce and Tukey [18) as modified by Luce [i61. (The relevant modifi-

cation extends the two factor results of L-T to any finite number of

factors--three for the case considered here.)

THEOREM. For simple options the DEU model is satisfied if and

only if (0,P) is additive.

PROOF. This proof requires only minor modification from that of

Theorem 1.3 in Tversky [33]. First assume (0,P) is additive. Then

there exist functions f, g, and h such that (a, e, t) P (d', e', t')

if and only if f(a) + g(e) + h(t) > f(a') + g(e') + h(t'). Let U(a) =

exp [f(a)], p(e) = exp [g(e)], and d(t) = exp [h(t)]. Clearly, then,

(a, e, t) P (a', e', t') if and only if U(a) p(e) d(t) - U(a') p(e')

d(t') and thus the DEU model is satisfied. Next assume the DEU model

is satisfied. By taking logs of the u, p, and t assumed to exist it

is easy to show the existence of an additive representation, which

completes the proof.

It is clear, then, that the L-T axioms, since they suffice for

additivity, imply the validity of the DEU model for simple options.

What the axioms assert, very loosely speaking, is that: (i) P is a

weak order; (i) that given a,a' e,e', and t there exists a t' such
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that (a, e, t) is indifferent to (a', e', t'), and similarly -r the

set A and set T; (iii) for each component the ordering induced on the

set of which that component is a member by varying that component is

independent oi the values at which the other two components are held;

and, (iv) there is a rather fine structure to the sets A, E, and T.

On the surface these axioms seem rather plausible, though if (ii)

is to be accepted events regarded as impossible must be excluded from

E. (Alternately, Luce [16] weakens (ii) in a way such that this sort

of restriction on E would be unnecessary.) In addition to the plausi-

bility of the axioms, an attractive feature of the model is its e'r-°iz-

ical testabili y; this is the sort of model I plan to use for the ex-

periment outlined at the end of Part Two/One.

The model has one serious drawback, however, that Tversky doesn't

seem explicitly aware of. The drawback is that p need not be proba--

bility measure and d need not satisfy certain term structure properties

required for a discounting function. Additional axioms are required

to get these results and in the next subsection of this Part I will

try to indicate (though I cannot prove) how this should be done.

II. SIMULTANEOUS MEASUREMENT OF PROBABILITY AND TIME PREFEPENCE

As in the preceding paragraphs I shall in this subsection attempt

to use the additive model of Luce and Tukey as a basis for the repre-

sentation desired. The basic subject matter comprises a set T of

points in time, a set E of events, and a relation > on H = T* )< E*,

where T* and E* are algebras of subsets of T and E. The set H is the

set of "happenings"; the intuitive notion here is that if one receives
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a prize "on" h = (t*, e*) '- H then one has access to that prize (may

use the prize) during all tt t* if event e* occurs. If hE H then so

is -h, where -h happens if .-t* or -e*. That is, -h happens if h fails

to happen; since both T* and E* are algebras, then hE H implies -h E H.

Consider now two prizes, p and q, with p really preferred to q.

Consider also two happenings h = (t*, e*) and h' = (t*', e*') and let

us say that we are faced with choice between two options. In option 1

we get p if h happens or q if-h happens; in option 2 we get p if h'

happens, q if -h'. What are the considerations that would lead us to

choose option 1 over option 2? If for both h and h' we had access to

the prize at the same time (i.e., t* = t*') clearly we would prefer

option 1 if we judged e* to be more likely than e*'. On the other

hand, if e* = e*' we would tend to prefer option one, given a positive

rate of time preference, if tP were sooner than t*' and they were of

about equal length, etc. In sum, we would judge option 2 inferior to

option 1 if h' were less totally discounted than h. If h' is less

totally discounted than h, I will denote this by h' < h.

(I am choosing to take < as a primitive relation here. It would

be possible, in the manner of Savage [28), to include the set of prizes

in the basic subject matter of the theory and have the primitive re-

lation be that of preference among acts. If that were done, an axiom

would be required to assure that, in the language of my previous dis-

cussion, if option 1 were preferred to option 2 for any p and q (with

p definitely preferred to q), option 1 would be preferred t- option 2

for all p' and q' if p' were preferred to q'. A theory including the

set of prizes would not really be more general than Jhe one I am dis-

cussing. The reason is that once discount weights have been assigned
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to each h E H, these weights can be used to calibrate cardinal util-

ities in the manner of von Neumann and Morgenstern [35]. This is

essentially what Savage does anyway.)

My basic intention here is to place axioms on the structure (H,

T*, E*, <) that will do the following: (i) guarantee the existence

of a probability measure p on E*, (ii) guarantee the existence of a

discounting function d on T*, and (iii) for h = (t*, e*) and h' =

(t*', e*') E H, have h < h' if and only if d(t*) p(e*) - d(t*') p(e*').

I cannot at present state axioms from which I can prove the desired

representation. However, my conjecture is that the following general

st-ategy will suffice.

First, apply Luce's [16] modification of the L-T system to the

structure (H, T*, E*, <). This modification will allow there to exist

elements that cannot be compensated, for example, the probability of

the null event. F-om these axioms it is clear that functions f and g

on T* and E* exist that satisfy property (iii) in the pa -igraph above.

Also, it is clear that there exist weak orders on T* and E* that corre-

spond to the notions of "more discounted than" and "more probable

than". We can add new axioms for these weak orders to obtain the re-

quired probability and discount measures, p and d. (An attractive set

of axioms are those of Luce [25]; the same axioms will serve for both

p and d becausa of the formal similarity between probability and dis-

count measures that was pointed out in Part Two/Two.)

The basic rcmaining formal problem is this. The functions f and g

satisfying the additive ('rjoint measurement are clearly monotonically

consistent with the functions p and d, since they represent the same
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underlying weak order. However, p and d are unique. The question

then is: do there exist f' and g' satisfying the conjoint axiomat-

ization such that f' = p and g' = d? It seems inLuitively clear to

me that the answer here is "yes", for the following reason. Interpret

T as well as E as a set of random events and have the members of T be

probabilistically independent of E. Then the set H is the set of joint

events and clearly the ordering of the probabilities of the joint

events will be consistent with the ordering induced by the product of

the probabilities of the component events. Thus I do feel that I will

be able to eventually prove the conjecture with which i close Section

Two.

I"

I!
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Section Three

INFORMATION AND CHOICE

Uncertain events generally determine the outcome of a decision-

maker's choice; this indeterminateness introduces a need for modifi-

cation of a number of formulations of classical economic theory. This

reformulation may be of a rather simple technical character--Debreu [22],

for example, simply redefines a commodity to include the event upon

which its transfer is conditional. All the theorems concerning eco-

nomic equilibrium in a certain world apply directly to this newly de-

fined world in which all uncertainty is accounted Cor. The reason

this approach seems so intuitively unsatisfactory is, I feel, due to

its failure to systematically consider information as a commodity.

Arrow [4] has reviewed a number of studies of how treating information

as a commodity affects economic theory and I would cast some of the

questions raised in the following form:

1. How can we quantify information?

2. What are characteristics of information as a commodity that

set it apart from other comwodities? To what extent do these

characteristics raise difficulties for economic theory?

3. How is informa.tion optimally used?

4. How is information actually used?

Section Three of this dissertation is primarily concerned with

que-tions 3 and 4, though there are also some comments on 1. In Part

Three/One I examine aspects oC the normative problem posed by question

3 and in Part Three/Two I examine and develop a number of descriptive

theories of information usage, or theories of learning.

, !
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Normative Theories of Information Usage. Arrow [3, p. 131 has

stressed that "the influence of experience on beliefs is of the utmost

importance for a rational theory of behavior under uncertainty, and

failure to account for it must be taken as a strng objection to theories

such as Shackle's." In the paragraph preceding this comment Pror. Arrow

implicitly indicates that this rational theory would, in his view, con-

sist essentially of consistent utilization of Bayes' theorem. This is

a view vigorously denied by some philosophers, for example Patrick

Suppes [65], who contends that concept formation or insightful inference

is in some stnse rational and cannot be accounted for in terms of Bayes'

theorem. (I should note that the Bayes' theorem view is also supported

by a number of phiiosophers, most prominently Frof. Carnap [17, 18], and

that in most respects the views of Suppes are rather close to Carnap's

on these matters.) This issue of the sufficiency of Bayt-s' theorem for

a rational account of belief change seems to me to raise two queitions:

1. What conceptual alternative is there to Bares' theorem?

2. To what extent can clever use of Bayes' theorem account for

'rational' seeming concept learning behavior?

I know of no positive answer to question I. One o, U1: major purpose-;

of Part Three!One -s to provide a partial answor to: qt.-tion 2, that fs

to show that Bayes' theorem may well be applicable in certain concept

learning tasks. I feei that Bares' theorem is not the end of a theory

of rational information usage but rather Its beginning. The tssu-q to

pursue are how does one ch.;racterize the event space in such a way that

any structure ft may have becomes apparent and how dots one aqign prior

probabilites over that space: the results in Part Throe/ne denend on
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doing this in specific ways. (The assertion that assignment of priors

is a valid aspect of a theory of rational choice is, incidentally, the

primary distinguishing feature between adherents of 'logical' and

'personalistic' theories of probability--see Carnap [19].)

I must say that I see no way at present of integrating the material

of Part Three/One into the mainstream of economic theory. As an obvi-

ously essencial aspect of the theory of individual choice behavior it

stands on its own as a component of microeconomic theory. The question

remains, however, of whether this approach will prove suggestive in

addressing any larger economic issues such as, for example, determinants

of investment in research and development or dissemination of new tech-

nique.

Descriptive Theories of Information Usage. Since the early 1950s

mathematically formulated theories of information usage (or learning)

have played an increasingly important rcle in psychology. In 1958

Prof. Arrow [2, p. 13] predicted that these theories would have a

major influence in economics: "Learning is certainly one of the most

important forms of behavior under uncertainty. In this field, recent

work is giving rise to results which may have very striking impact on

economic thought." I think it fair to say that this prediction has

not yet been borne out. There seem to me to be three major reasons

for this:

First, in attempts to provide empirically adequate theories, psy-

chological theorists have introduced a complexity into their choice

models that renders them difficult to integrate into more aggregate

theories. Luce and Suppes [41A, p. 2531 stress this point: "While

being elaborated as distinct and testable psychological theories, the
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richness an compiextv --- hopefuIlIy re! iecting a true richness an6 c rm-

plexity cf behavior---that renders them largely useless as bases tor

econcra ic and statistical theories. Perhaps we may ultimately find

simple, yet reasonably accurate, approximations to the more exact de-

scriptions of behavior that can serve as psychological foundations for

other theoretical developments, but at the moment this is not the main

trend."

Second, since detailed theories of learning and choice are most cern-

trally the concern of the psychologist, economists have probably felt

little need to do active research in this area. This contrasts sharply

with detailed studies of firm behavior; though such studies are natural

analogs of detailed study of individual choice behavior, there is no

other discipline specifically concerned with those problems. Thus the

study of firm behavior is a more natural focus for economic research.

Third, theories of learning have generaliy been constructed only

for highly artificial tasks with information structures of an unusually

unrealistic sort. it is primarily for this last sort of reason, I feel,

that learning theory has had almost as little serious application in

education as it has in economics.

The primary purpose of Part Three/Two is related to lessening the

thrust of the third comment above. In that part a variety of new theo-

retical models are presented to account for situations dealt with in

previous work in learning theory. Then the class of situations con-

sidered is broadened to include analysis of situations where there is

only incomplete information of various types in the reinforcement set.

This sort of incomplete information is much more typical of economic
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formntion case. Nevertheless, even tho -odels treated here can only

be considered rather abstract idealizations of real life behavior,

One possible source of data for testing t,.se models in a more

realistic environment ight come from the pa-tially computer based

microeconomic tneory course that Martin Shubik and R. Levitan are de-

veloping. Included in this course ill be 20 exercises (of about an

hour's length) at a computer based teletype. The student will b( sked

to take the role .f, say, a monopolist and will be forced to make the

sort of price, quantity, advertising, etc. decisions that a monopolist

must make. The student will make a series of decisions receiving along

the way information concerning the consequences of his previous de-

cisions. Prof. Shubik told me that one of his purposes in constructing

this course is to obtain detailed empirical information concerning in-

dividual choice behavior where the individual is acting as represen-

tative of a firm. Certain of the models developed in Part Three/Two

may be of use in analyzing this data, particularly those models assuming

a continuum of response alternatives.

I -t me end t1- -" tev -'mnwnt- this Section hv q11"

the possibility that there may in the future develop a theory of general

economic equilibrium based on descriptive stochastic models rather than,

as at present, on normative deterministic ones. The elements that need

to be integrated in a systemtic way are: (i) stochastic theories of

preference and learning, ('i) stochastic theories of the firm, such as

that pioneered by Newman and Wolfe [47A], and (iii) stochastic theories

of market adjustment such as I am now working on--Jamison [36].



Part Three/One

INFORMATION AND INDUCTION: A SUBJECTIVISTIC

VIEW OF SOME RECENT RESULTS

I. INTRODUCTION

We might distinguish between inductive and deductive inferences

in the following way: Deductive inferences refer to the implications

of coherence for a given set of beliefs, whereas inductive inferences

follow from conditions for 'rational' change in belief. Change in

belief, I shall argue in the subsection II, is perhaps the most philo-

sophically relevant notion of semantic information. Thus rules govern-

ing inductive inferences may be regarded as rules for the acquisition

of semantic information.

I have four purposes in this part. First I shall attempt to pro-

vide a definition of semantiz information that is adequotp from a sub-

jectivist point of view and that is based on the concept of information

as change in belief. From this I shall turn to a subjectivistic theory

of induction; the second purpose of this work is to suggest a solution

to the inductive problem that Suppes [62, pp. 514 - 515] points out to

lie at the foundations of a subjectivistic theory of decision. (By this

Footnotes in this part are numbered consecutively and appear at
the end of the pait.



I do no! mean to suggest a slu t ion to the induc Live problem of Hume

L would a;ree with Savage [57] that the subjective theory of probabil-

ity simply cannot do this.) The third thing I wish tc do is to she,.,

how Carnap's continuum of inductive methods may be eas.il interpreted

as a special case uf Lne subjectivistic theory of induction to be pre-

seated. Finally, i provide a subjectivistic interpretation of lintikka's

two dimensional inductive continuum, and show how this is related to the

problem of concept formation.

-I



i[. SEMANTIC INFORMATION AND INDUCTION

Two Notions of Semantic Information

Two alternative notions of semantic information are reductie:i In

uncert, intx and change in belief. Redu. tion in uncertainty is, clearly,

a special case of change in belief. Information is defined in terms of

probabilities; hence, one's view of the nature of probability is inev-

itably an input to his theory of information. As there are tlr- prom-

inent views concerning the nature of probability--the relative fre,,wlnc,

logical, and subjectivist views--and there are the two conc,;,-. of infor-

mation just mentioned, we can disti~igaish six alternative theories of

information. Table 1 arrays these theories.

Table 1 Theories Gf nfoGrmation

Concept of Concept of Probability

Information Relative Frequency Logical Subjective

Change in

Belief CR CL CS

Reduction of

Uncertainty RR RL RS

RS, for example, would be a theory of information based on a sub-

Jectivist view of probability and a reduction of uncertainty approach

to information. The development of the RR theory by Snannon [58] has

provided the formal basis for most later work. Carnap and Bar-H1illel [20]



-57-

developed RL and Bar-Hillel [8,91 hints at the potential value of

developing what I would call RS or CS, though his precise meaning in

unclear. ,,,eed's [61] discuosiun or .!pragmaclc informativeness" is

related. Smokler [591 as well as Hintikka and Pietarinen [27] have

further developed RL..

An undesirable feature of RL is that in it logical truths carry

n2 information. For example, solving (or being told the solution of)

a difficult differential equation gives you no new information. This

is a result of accepting the "equivalence condition," ramifications

of which are discussed by Smokler [60]. R. Wells [72] has madL an

important contribution to the development of RS by beginning a theory

of the information content of a priori truths. To continue the ex-

ample above, 1-lls allows that the solution to the differential equa-

tion mby, indeed, give information. R. A. Howard'x 1301 iper on

"information value theory" developa RS in a decision-theoretic context,

deriving the value of clairvoyance and using that value as the upper

bound to the value of any information. McCarthy [431 has also devel-

oped a class of measures of the value of RS information.

Two further works concerning semantic information and change in

belief should be noted. MacKay [42] has developed techniques of in-

formation theory to analyze scientific measurement and observation.

His view -,y be considered a change in belief view. In a more recent

work Ernest Adams [11 has develn,-d a th-,nry of measurement in which

information theoretic considerations play an important role. It seems

to me that one interpretation of his approach would be that the purpose

of measurement is simply the attaimaent of semantic information, though

i
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n,,ins would iot agree with this. Throughout Adsms uses a frequency

interpretation of :,robability.

Initiating a CS Theory of Information

What seems to me to be the wost natural notion of semantic infor-

mation is change in belief as reflected in change in subjective pro-

babilities. That is, I would regard CS as the most fundamental entry

in the table shown above, at least from a psychologist's or philosopher's

point of view. There are two primary reasons for this. The first is

that change in belief is a more general notion than reduction of un-

certainty, subsuming reduction in uncertainty as a special case. The

second is that reality is far too rich and varied to be adequately

1
reflected in a logical or relative frequency theory of probability.

Let me now turn to definitions of belief and information.

Consider a situation in which there are m mutually exclusive and

collectively exhaustive possible states of nature. Define an m-1 dimen-

sioned simplex, . in m dimensioned space in the following manner:
0

1 land F 1< i < m The vector

ii

bution over the states of n&L_. " probabillity of the ith

state of nature. is the set of all possible probability distribu-

tions over the m states of nature. For these purposes a belief may be

simple defined as a subjectively iel,. vector F . Measurement of be-

lief is an example of "fundamental" measurement and the conditions

under which such measurement is post'ble are simply the conditions that

mun" obtain in order that a qualitative probability relation on a set

may be represented by a numerical measure. Information is an example

of "derived" measurement.
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Roby [55] has an interestirag discussion of belief sLaLes defined
-4

in this w'. Let F be a person's beliefs before he receiveR some

information (or me.sage) M, and F1 his beliefs afterwards. The

notion of message here is to be interpreted very broadly -- it may be

the result of reading, conversation, observation, experimentation, or

simply reflection. The primary requirement of a definition of the

amount of information in the message M, inf(M), is that it be a

(strictly) increasing function of the "distance" between F and F'.

Perhaps the simplest definition that satisfies this requirement is:

m

inf(H) (E V 'I * - Fi)2 1
i-i

A drawback to this definition is that the amount of informatirn

is relatively insensitive to m. Consider two cases where in the first

m - 4 and in the second m - 40. In each F1 - I/m for 1 i < m

and and - 0 for i > 1. It would seem that in some senseI Ai

in the case where m equaled 40 a person would have received much more

inforntion than if m had equaled ' -nd the Shannon measre of informa-

tLo,,, . aple, reflects this Lntuition. However, for ir 4, the

informaaion received as defined in (1) is .876, and for . a 40 it is

.989, a rather small difference. An alternative definition, that takes

care of this defect, is:

inf(M) - - ) F. (2)

The apparent complexity makes some numbers come out nicely; from the
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preceeding example, wh,.n m - 4 the '.nformatlon conveyed as measured

by (2) is 2. For m - 40, it ig 20.

The definitions in equations (1) and (2) are meant merely to show

that a CS theory of information can be di3cussed in a clear and formal

way. Implications of these definitions -- or alternatives to them --

must await another time, as the rest oi this pa, r will be concerned

?rimarily with induction.

Semantic Information and Induction

For purposes of discussing induction we might consider three

levels of i,.ductive inference. The first and simplest level is simply

conditional'-ation or the updating of subjective probabilities by

means of Bayes' theorem. That this is the normatively proper way LO

proceed in some i-nstancee seems undeniable. A more complicated level

of inductive inference concerns inferences made on thu basis of the

formation of a concept. The highest level of InduLcive inferences are

inductions made from scientific laws, by which I simply mean mathema-

tical models of natural phenomena. The distinction between the second

and third levels of inference is that tmodels have parameters to be

evaluated whereas concepts do not.

A question of son - interest concerning philosophical theories of

induction is whether some form of Bayesian updating will suffice for a

normative account ( inductive behavior at the second and third levels.

Suppes [6,1 answers the question just asked with a clear "no." IIL

summarizes his position in the following way,

"The core of the problem ts developing an adequate

psychological theory to describe, in.ilye, and predict the
structure imposed by organisms on tie bewilderling complcxites
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of possible alternatives cl-'g their.. I hope I have made
it clear that the simple t-ncept of an a priori di trlbu-
tion over these alternatives is by no means sufficient and
does little toward offering a solution to arty complex

problem."

Suppes even suggests that in cases where Bayes' theorem would fairly

obviously be applicable a person might not be irrational to act in some

other way. While 1 c.nnot 2t2 thp rationale for this, the poi,.ts he

makes about concept formation and, implicitly, about the construction

of scientific laws seem well taken. To put this i, the context of our

discussion of semantic informaLion I would suggest that a concept had

been formed when a person acquires much semantic information (i.e.,

radicallv rearranges his beliefs) on the basis of small evidei,ce.

In the following two sections of this paper I deal with inIuctive

inference of the slmplest sort. In the final section of the paper I

attempt to show tha. Suppes' pessimis|m concerning a Bavesian theory of

concept formation is partially uniustificd.
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III. A SUBJECTIVISTIC THEORY OF INDUCTION

My NItscussion of induction will be formulated in a decision-

theoretic framework, and I will digress to problems of decision theory

here and there. The discussion of decisions under total ignorance

forms the basis for the later discussion of inductive inference, and

the intuitive concepts of that subsection should be understood, though

the mathematical details are not of major importance.

All essentials of a subjectivistic theory of induction are con-

tbined in Bruno de Finetti's [23) classic paper. The probability of

probab~iitiea approach developed here can be translated (though not

always simply) into the de Finetti framework; the only real Justifi-

cation for using probabilities of probabilities is their cenceptual

simplicity. The tmportance of this simplicity will, I think, be illus-

trated in Sections IV and V.

A trivle P - < D, 0, U > may be considered a finite decision

problem when: (i) D is a finite set of alternative courses of action

avail .ble to a decision-maker, (ii) J is a finite set of mutually

exclusive and exhaustive possible states of nature, and (iii) U is a

function on D)X 1 such that u(di, ) is the utility to the decision-

maker if he chooses di and the true state of nature turns out to be

W j* A decision proce'ure (solution) for the problem P consists either

of an ordering of the di a -cording to their desirability or of the
ii ! specificatton of a subset of D that contains all dl that ar in some

i

sense opLilkil and only those d that are optimal.
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If there are m states of nature, a vector . - (iI,.*.,F) Is a

pows"Ae probability distribution over - (with prob(w1) - if and
m

only if lj - I and c, 0 ior 1 ! j ! m. The set of all possible

probability distributions over . that is, the set af all vectors

whose components satisfy the above equation and set of inequalities

will, as in the preceeding section, be denoted by . Atkinson, Church

and Harri i5) assume our knowledge of F to be completely specified by

ossertirg that C F .. where F-' 0 c , If F 0 , they say we are in

complete ignorance of . In the manner of Chernoff [211 and Milnor [46]

Atkinson, et al, g. ,e axioms stating desirable properties for decision

procedures under complete ignorance. A class of decision procedures

that isolates an optimal subset of D is shown to exist and satisfy the

axioms. These procedures are non-Bayesian in the sense that the' cri-

terion for optimalLty is iot maximization of expected utility. Other

non-Bayesian procedures for complete ignorance (that fail to satisfy

some axioms that most people would consider reasonable) include the

following: minimax regret, minimax risk (or maximin utility), and

Hurwicz's o' procedure for extending the minimax risk approach to non-

pessimists.

The Bayesian alternative to the above procedures attempts to

order the di according to their expected utility; V 3 optimal act is,

then, simply the one with the highest expectee 'ility. Computation

of the expected utility of d,, E u(d), is straightforward if the

-. 4*

deciaion-maker knows that _ is a set with but one element --

to
E u(di) - E u(d,, wj) . Only in the rare instances when con-

siderable relative frequency data exist will the decision-maker be

5
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abl* to assert that 7 has only o,.c elenent. in the m(,re general case
0

the decision-maker will be in "partial" or "total" ignorance concern-

ing the probability vector 7 . It is the purpose of the next two sub-

sections to characterize total and partial ignorance from a Bayesian

point of view r-d to show that decision procedures based on maximiza-

tion of expected utility extend revdily to these cases.

Decisions Under Total Ignorance

Rather than saying that our knowledge of the probability vector
-4

is specified by asserting that 7 e -eo for some ' I suggest that it

is natural to say that our knowledge of is specified by a density,

m) , defined on -. If the probability distribution over

is known to be 7 , then f is a function at r and computation of

Eu(di) proceeds as in the introduction. At the other extreme from

precisely knowing the probability distribution over - is the case of

total ignorance. In this sub-section a meaning for total ignorance

of F will be discussed. In the following subsection decisions under

partial ignorance -- anywhere between knowledge of F and total ignor-

ance -- will be discussed.

If H(r) is th,± Shannon [58] measure of uncertainty concerning

which w in - occurs, then H (F) - i log 2(I! i), where H(!) is

meLsured in bits. When this uncertainty is a maximum, we may be

considered in total ignorance of w and, as one would expect, this

occurs when we have no reason to expect any one cL more than another,

i.e., when for all i, 1 - 1/r. By analogy, we can be considered in

total ignorance of 9 when H(f) -f... f f() log2 (l/f(r)) d: is aJJ .2
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maximum. This occurs when f is a constant, that is, when we have no

reason to expect any particular value of to be more probable than

any other (see Chap. 3 of Shannon). If there is total ignorance con-

cerning ', then it is reasonable to expect that there is total ignor-

ance concerning u)-- and this is indeed true (if we substitute the
•3 !

expectation of i, E( i), for r). Let me now prove this last asset-

tion, which is the major result of this sub-section. While this could

be proved using the rather general theorems to be utilized in my dis-

cussion of Carnap, I think it is intuitively useful to go into a little

more detail here.

Proving that under total ignorance E( i) - 1/m involves, first,

determinationof the appropriate conntant value of f, then determination

of the marginal density functions for the s and, finally, integration

to find E(Fi).

Let the constant value of f equal K; since f is a denaity the

integral of K over 5 must be unity:

[ .fK dv- 1, (3)

where dt a dl.. .d;m. Our first task is to solve this equation for K.

Since f is defined only on a section of a hyperplane in m dimensioned

space, the above integral is a many dimensioned 'surface' integral.

Figure I depicts the three dimensional case. As ;m is

determined given the previous n-l %s and the integration need only be

Insert Figure 1 About Here

.. . . . . . . . .. . . . . . . . .
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Fig. 1-- !5, the set of possible probability distributions over

AI
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over a region of m-I dimensioned space, the region A in figure 1. It

is shown in advanced calculus that d--- and dA are related in the follow-

ing way:

dv (cl x ) + (X#* M1 dA
SIm-l)

where x is the function of 1o*", m that gives thc ith component

of F , that is x.(.) * Ki for i less than or equal to m-1 and x1(.) -

1 - 1 ' "*" - M-l if i a m. It can be shown that each of the m

quantities that are squared under the radical above is equal to either

plus or minus one; thus d5 1 "dA , Therefore (3) may be rewritten

33 follows:

j' ... " K"' dA 1, or

* m2d1 d~. A * 1K /nm (4)

The multiple integral in (4) could conceivably be evaluated by

iterated integration; it is much simpler, however, to utilize a tech-

nique devised by Dirichlet. Recall that the gamma function is defined

in the following way: F(n) f xn- e.Xdx for n ! O. If n isa

positive integer, r(n) - (n wl and 0! a 1. Dirichlet showed the

following (see Jeffreys and Jeffreys [391, pp. 468-470): If A is the

closed region in the first ortant bounded by the coordinate hyperplanes
and by the nurice (X1/C1) + ( 2andby hesurace(x1 / 1 + (x 2/C 2 +.. + (x/ n /C n , then
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ty C, a'- T,2- 0-1 1 01 2.." 0" xc x2 ... n nA=..
X x 2 A nP 2 - (5)1C *onCl

2 3 *..C *n P 2  p ,
Jl.2.J*P (1+ -- + - +...+ _2)

"P1 
P2 Pn

For our purposes, ci - P, = a, = 1, for 1 i m and the m-1i a

replace the n xs. The result is that the integral in (4) becomes

llr(m) - 1/(m-l)!. Therefore K - (m-l). ,"m/m.

Having determined the constant value, K, of f we must next deter-

mine the densities f (F1) for the individual probabilities. By sym-

metry, the densities must be the same for each '. The densities are

the derivatives of the distribution functions which will be denoted

Fi(P,). F1(c) gives the probability that is less than c; denote

by Fl(c) the probability that I a c, that is, F1(c) - 1 - FP(c) is

simply the integral of f over c where %-c is the subset of _

including all points such that I c. See Fig. 2. FI(c) is given by:

----------------------------------
Insert Figure 2 Aboit k 1c

-------------------------------------------

F (c) - .. f f(F) d - .. K m dA . (6)

c c

Since K = (m-l)! /m/m, (6) becomes (after inserting the limits of

integrat ion):

rl(!4) -- 2ml "F1(c) (rnI) d"d 2 d~1  (7)
C o 0
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(3

(O~O,4

Fig. 2-- - ,the subset Of t- sch that c.
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A translation of the F1 axis will enable us to use Dirichlet Integra-

tion to evaluate (5); let ' - " c. Then F' + 02 + . + * a 1-c,
m-

or FI(l-c) + 2/(l-c) + ... + , i(1-c) I (since F, - I is the

boundary of the region A). Referring back to equation (5) it can be

seen that the cis in that equation are all equal to 1-c and that,

therefore, the integral on the r.h.s. of (7) is (1-c) If/r(m). Thus
1 1

F 1 (c, [(m-1)!(1-c)m - ] /ri(m) - (1-c)m ' . Therefore Fl(c) 1 -

(1-c) m  Since this holds if c is set equal to any value of

between 0 an6 1, F1 can replace c in the equation; differentiation

gives the probability density function of F, and hence of all the is:

f Q (r-l)(1- i) n2 (8)

From (8) the expectation of is easily computed--

E(F) a 1 !i(m-l)(1-!i) m-. Recourse to a table of integrals will

quickly convince the reader that E (ci) I I/m. Figure 3 shows f F )

for several values of m.

Insert Figure 3 about here

Jami4on and Kozielecki [37] have determined empirical values of

the function fi(Ei) for m equal to two, four, and eight. The experi-

ment was run under conditions that simulated total uncertainty. The

results were that subjects underestimated density in regions of rela-

tivity high density and overestimated it in regions of low density--

an interesting extension of previous results.

This work appears as Part Four/One of this dissertation--see
pp. 174-189.
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6-

I m*7

Fig. 3-- Marginal densities under total uncertainty .f.0
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Let u(d1 ,') 
=  u(d (L Then the expected utlity of d

is given by:

Eu(di) ... J K u(dic)d-.. (9)

m m

This is equal to F E u(d (L) (I/m)Z s(d a, since u(di,
j -1 j.1l

is a linear function of the random variables "l" Thus, taking the view

of total ignorance adopted herein, we arrive by a different route at

the decision rule advocated by Bernoulli and Laplace and axiomatized

in Chernoff [211.

Decisions Under Partial Ignorance

Partial ignorance exists in a given formulation of a decision if

we neither know the probability distribution over 7' nor are in total

ignorance of it. If we are given F 
)
, the density over ,

computation of Eu(di) under partial ignorance is in principle straight-

forward and proceeds along lines similar to those developed in the

previous section. Equation (9) is modified in the obvious way to:

E u(d) - f J.,, J f(#)u(d,d?-. (10)

If f is any of the large variety of appropriate forms indicated Just

prior to equation (5), the integral in (10) may be easily evaluated

using Dirichlet integration; otherwise more cumbersome techniques must

be used.

In practice it seems clear that unless the decision-maker ha

remarkable intuition, the density f will be most difficult to specify
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from the partial information at hand, Fortunately there is an alter-

native to determining f directly.

Jeffrey [38, pp. 183-1901, in discussing degree of confidence of

a probability estimate, de3cribes the following method for obtaining

the distribution function, F i(i ), for a probability. 4the istibuionfuntio, Fi~i) fo a robbilty. Have the deci-

sion-maker indicate for numerous values of i what his subjective

estimate is that the "true" value of F. is less than the value named.

To apply this to a decision problem the distribution functon--and

hence fi( i)--for each of the is must be obtained. Next, the expecta-

tions of the -.s must be computed and, from them, the expected utili-

ties of the di s can be determined. In this way partial information is

processed to lead to a Bayesian decision under partial ignoranc..

It should be clear that the uecision-maker is not free to choose

the f s subject only to the condition that for each fi f(-)d=' - 1.
1 0 i i I0

Consider the example of the misguided decision-meker whc believed

himself to be in total ignorance of the probability distribution over

3 states of nature. Since he was in total ignorance, he reasoned, he

must have a uniform p.d.f. for each -t" That is, fl(=l) - f,(r1 )

f3( ) 3- 1 for 0 r K 1. If he believes these to b,

should be willing to simultaneously Lake even odds on bets that 1/2,

1 1/2, and r3 > 1/2. I would gladly tike these three be,, for

under no conditions could I fail to have a net gain. This example

illustrates the obvious--certain conditions must be placed on the f is

in order that they lie coherent. A necessary condition for coherence is

indicated oriow; I have not yet derived sufficient conditions.
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Consider a deci3ion, dk, that will result in a utility of I for

each (u Clearly, then, Eu(dk) 1 I. However, Eu(dk) also equals

E (l)u(dk,,nI) + ... + E(rM)U(dk ,wm). Since for i i mM, U(dkai) - I,

a necessary condition for coherence of the f s is that (ft) - 1,

a reasonable thing to expect. That this condition iL, nct eufficient is

easily illustrated with two states of nature. Suppos . that f is

given. Since a2 - ell f2 2q uniquely determined given f1"

Howev.,r, it is obvious that infinitely many f s will satisfy the con-

dition that F *(C2  1 - E(I ), and If a person were to have two dis-

tinct f2s it would be easy to make a book against him; his beliefs

would be incoherent.

If m is not very large, it would bc possible to obtain condi-

tional densities of the form f2( ,, 2((21 etc., in a

anner analogous to that diccussed by Jeffxey. If the conditional

densities were obtained, then f(Q) would b* give.n by the following

expression:

A suffcient condition that the f s be coherent is that the integral

of f over 7be unity; if it differs from unity, one way to bring about

coherence would be to multiply f by the appropriate constant and then

find the new fis. If m is larger than 4 or 5, this method of insuring

coherence will Lr hopelessly unwieldy. Something better is needed.

At this point I would like to discuss alternatives and objections

to the theory of decisions under partial information that is developed

here. The notion of probability distributions over probability
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distributions has been aroind for a long time; Knight, Lindall, and

Tintner explicitly used the notion in economics some time ago (see

Tintner [711.5 This work has not, however, been formulated in terms of

decision theory. Hodges and Lehmann [28] have proposed a decision rule

for partial ignorance that combines the Bayesian and minimax approaches.

Their rule chooses the di that maximizes Eu(di) for some best estimate

(or expectation) of g, subject to the condition that the minimum utility

possible for di is greater than a preselected value. This preselected

value is somewhat less than the minimax utility; the amount less increases

with our confidence that ? is the correct distribution over (. Ellsberg

[241, in the lead article of a spirited series in the Quarterly Journal of

Economics, provides an elaborate justification of the Hodges and Lehmann

procedure, and I will criticize his point of view presently.

Hurwicz [32] and Good (discussed in Luce and Raiffa [411, p. 305)

have suggested characterizing partial ignorance in the same fashion that

was later used by Atkinson, et al., [5]. That is, our knowledge of - is

of the form 9 e -r where is a subset of . Hurwicz then proposes that

.we proceed as if in total ignorance of where is in v . In the spirit of

the second section of this paper, the decision rule could be Bayesian with

f() -K for? et -o and f() - 0 elsewhere. Hurwicz suggcsts instead utili-

zation of non-Bayesian decision procedures; difficulties with non-Bayesian

procedures were alluded to in the introduction to subsection III.

Let me now try to counter some objections that have been raised

against characterizing partial ignorance as probability distributions

over probabilities. Ellsberg [24, p. 659] takes the view that since

iepresenting partial ignorance (ambiguity) as a probability distribution
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over a distribution leads to an expected distribution, ambiguity must

be something different from a probability distribution. I fail to

understand this argument; ambiguity is high, it seems to me, if f is

relatively flat over - , otherwise not. The "reliability, credibi-

lity, or accuracy" of one's information simply determines how sharply

peaked f is. Even granted that probability is somehow qualitatively

different from ambiguiLy or uncertainty, the solution devised by

flodges anG Lehmann [28] and advocated by Ellsberg relies on the

decision-maker's completely arbitrary judgment of the amount of ambi-

guity present in the decision situation. Ellsberg would have us hedge

against our uncertainty in = by rejecting a decision that maximized

utility against the expected distribution but that has a possible out-

come with a utility below an arbitrary minimum. By the same reasoning

one could "rationally" choose d1 over d2 in the non-ambiguous problem

below if, because of our uncertainty In the outcome, we said (arbi-

trarily) that we would reject any decision with a minimum gain of less

than 3.

"1 2

d 5 5

d 1 25
2

I would reject Ellsberg's approach for the simple reason that its

pessimistic bias, like any minimax approach, leads to decisions that

fail to fully utilize one's partial inforwation.

Savage [56, pp. 56-601 raises two ob-ections to second-order

probabilities. The first, similar to Ellsberg's, is that even with

I!
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second-order probabilities expectations for the primary probabilities

remain. Thus we may as well have, simply arrived at our best subjective Ilk

estimate of the primary probability, since it is all that is needed for
decision-making. This is correct as far as it goes but, without the

equivalent of second-order probabilities, it is impossible to specify

liow the primary probability should change in the light of evidence.

Sava ,e's sccond objection is that "...once second-order probabilit es

are introduced, the introduction of an endless hierarchy seems ines-

capable. Such a hierarchy seems very difficult to interpret, and it

seems at best to make the tieor\ Ivss realistic, not more." Luce and

Raiffa [41, p. 305] express much the same objection. An endless hier-

archy does not secm inescapable to me; we simply push the hierarchy back

as far as is required to be 'realistic.' In making a physical measure-

menl we could attempt to specify the value of the measurement, the probable

error in the measurement, the probable error, in the probable error, and

on out the endless hierarchy. But it is not done that way; probable

errors usually seem to be about the right order of realism. Similarly,

I suspect that second-order probabilities will suffice for most circum-

6
stances. 6However, it discussing concept formation in Section V, I shall

have occasion to use what are essentially third-order nrohabil ties.

Induction

The preceding discussion has been limited to situations in which

the decision-maker has no option to experiment or otherwise acquire in-

formation. When the possibility of experimentation is introduced, the

number of alternatives open to the decision-maker is greatly increased,
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as is the complexity of his decision problem, for the decision-maker

must now decide which experiments to perform and in what order, when

to stop experimenting, and which course of action to take when experi-

mentation is complete. The problem of using the information acquired

is the problem of induction.

If we are quite certain that is very nearly the true probability

distribution over 0, additional evidence will little change our beliefs.

If, on the other hand, we are not at all confident about -- if f is

fairly flat -- new evidence can change our beliefs considerably. (New

evidence may leave the expectations for the gis unaltered even though

it changes beliefs by making f more sharp. In general, of course, new

evidence will both change the sharpness of f and change the expecta-

tions of the is.) Without the equivalent of second-order probabilities

there appears to be no answer to the question of exactly how new evidence

can alter probabilities. Suppes [62) considers an important defect of

both his and Savage's (56] axiomatizations of subjective probability

and utility to be their failure to specify how prior information is to

be used. Let us consider an example used by both Suppes and Savage.

A mau must decide whether to buy some grapes which he knows to be

either green (Wl), ripe (w 2), or rotten (j,). Suppes poses the fol-

lowiLg question: If the man has purchases grapes at this store 15 times

previously, and has never received rotten grapes, and has no informa-

tion aside from these purchases, what probability should he assign to

the outcome of receiving rotten grapes the 16th time?

Prior to his first purchase, the man was in total ignorance of the

probability distribution over f. Thus from equation (8) w, see that
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the density for 3' the prior probability of receiving rotten grapes,

should be f3(93) - 2 - 293- Let X be the event of receiving green or

ripe grapes on the first 15 purchases; the probability that X occurs,

given 3'is p(X 3) - (i - 3). What we desire is f 3 ( 3jX), the

density for 93 given X, and this is obtained by Bayes' theorem in the

following way:

1

f 3 (931X) - p(Xj93)f3(93)/ p(Xj93)f 3 (93 )d 3  (12)

0

After inserting the expressions for f3 (93) and p(X 93 ), equation (12)

becoe s:

f3 (931X) - (1 - 93) 15(2 - 293)/1 (1 - 93)15(2 - 2 3)d 3
0

Performing the integration and simplifying gives f3 ( IX) = 17(l C 3 ) 16

from this the expectation of 93 given X can be computed --
1. 16

E(931X) - 17 f 93(! - 93) 1 1/18. (Notice that this result differs
0

from the 1/17 that Laplace's law of succession would give. The differ-

ence is due to the fact that the Laplacian law is derived from consider-

ation of only two states of nature--rotten and not rotten. )

My purpose in this section was to show why second-order probability

distributions are useful in thinking about subjectivistic theory of in-

duction, and I have outlined the nature of such a theory.
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IV. SUBJECTIVISTIC INTERPRETATION OF CARNAP'S INDUCTIVE SYSTEM

Rudolf Carnap [161 has devised a system ..f inductive logic that

fits within the framework of the logical theory of probability. The

purpose of this section is to show that Carnap's system can be inter-

,?reted in a straightforward way as a special case of the subjectivis-

tic theory of induction presented in the preceeding section. That it

can be so interpreted does not imply, of course, that it must be so

interpreted. Let me begin by informally sketching Carnap's X conti-

nuum of inductive methods.

Carnap's 2j System

Carnap's system is built around a "language" that contains names

of n individuals -- xis x21 06., X -- and i one place primitive

predicates -- Pit P2  '"1 
P

.
I
T . Of each individual it may be said

that it either does or does not instantiate each characteristic, i.e.,

for all i (I ! i - n) and all j (1 - j 9 r), either Pj(xi) or -Pj(xi).

if, for example, P is "is red," then xi is either red or it isn't.

A "Q - predicate" is defined as a conjunction of r primitive

characteristics such that each primitive predicate or its negation

appears in the conjunction. Let . by the number of Q-predicates;

clearly, , 2". The following are the Q-predicates if r - 2:

PI & P2 " Ql

& 2 4n (13)

"P & P2 " Q

"PI & -P2 Q4

In a still unpublished manuscript Carnap [18] extends his original
system in a number of ways, some similar to those suggested here.

A
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If P1 is "is red" and P2 is "is squareU then, for example, Q4(xi)

meand that x is r.either red nor square, etc.

The Q properties represent the strongest statements that can be

made about the individuals in the system; once an individual has been

asserted to instantiate a Q-predicate, nothing further can be said

about it within the language. Weaker statements about individuals may

be formed by taking disjunctions of Q-predicates. To continue the

preceeding example if we let H - Q VQ2VQ 3 , then M(xi) is true if x

is either red or square or both. Any non-selfcontradictory character-

istic of an individual that can be described in the laaguage can be

expressed as a disjunction of Q-predicates.

The logical width, w, of a predicpte, say M, is the number of

Q-predicates in the disjunction of Q-predicates equivalent to M. Its

relative width is defined to be W/. If M is as defined in the pre-

ceeding paragraph, its logical width would be 3 and its relative width

3/4. A predicate equivalent to the conjunction of all the Q-predicates

in the aystem is tautologically true and its relative width is 1. The

logical width of a predicate that cannot be instantiated (like PI & "P0

is zero. In some sense, then, the greater the ,elative width of a pre-

dicate the more likely it is to be true of any given individual.

Notice that the relative width of any primitive predicate, Pi, is 1/2,

whatever the value of TY

Let us turn now to the inductive aspects of the system. Suppose

that we are interested in some property M and have seen a sample of

size a of individuals, s of whom had the property M. What are we to

think of the (logical) probability that the next individual th"- we
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observe will have the property M? Carnap suggests that two factors

enter into assessing this probability. The first is an empirical factor,

a Is/, which is the observed fraction of individuals having property 14.

The second &' a logical factor, independent of observation, and equal

to the relative width of M -- w/k . A weighted average of these two

factors gives the probability that the s+Ist individual, x,+l, will

have M. One of the factor weightings msy be arbitrarily chosen and,

for convenience, Carnap chooses the weight of the empirical factor to

be o. The weight of the logical factor is given by a parameter X

(X may be some function X(,), but we need not go into that). Thus we

have:

prob(I(x+ I) is true) - (si + X/WI)/(s + X) (14)

The limiting value of the expression in (14) as X gets very

large is w/, i.e., only the logical factor counts. If, on the other

hand, X - 0 then the logical factor has no weight at all and only

empirical considerations count. Thus the parameter k indexes a conti-

nuum of inductive methods -- from those giving all weight to the logi-

cal f'ctor to those giving it none.

ASubietctiiStic IntervretatLon of the . sys t

There are 2 Q-predicates in the Carnap system. The Q-

predicates may be numbered Ql, too, Qr. Let be the (subjective)

probability that any individual will instantiate Qi" The probabilities

P, may be unknown and, following the precedent of the preceeding

section, we may represent our knowledge of these probabilities by a

density f defined on Since 1 the density

II



4

-83-

need only be defined on a 1- - I dimensioned region analogous to the

region A in figure 1. The densities we shall consider will be Dirichlet

densities, so let us now define these densities and examine some of

their properties.

The <- 1 variate Dirichlet density is defined for all points

( E, "" .F ) such that 2i 0 and I. The density has •

para eters -- ... , , -- and is defined as follows:

S ( v) Vl V - V-1
t~r r 1 - ( ( - -2 (15)

where the sums (r.) and products (7) are over all the v , and the r'
i

denotes the gam function. Let us let v i a / for I ! i . and

see what happens. First we need two theorems proved in Wilke (73,

pp. 177-182':

Theorem I. If r is a random variable in the density given in

- I
(15) then E (' V 1  Vi .

Theorem 2. If (F1  ".-I1I) is a vector random variable having

a *-I variate Dirichlet densatv with parameters vi"".,' then tie

random variable (t,)... a where a "I +'"+ wJl' a2 eJl + I + '. ' +

r *.. z.r ,+.+ ,andJ+.,J<-,
l+J2'.. a il+,..+Je- +I + oJl+...+Js .

has an s variate Dirichlet distribution with parameters l,, . a+1

where 9l Vl+"i++ Vj ,..., s V" + '  - I + I +'l " +

and 9 +1  ,

Finally we need ore sore standard theorem about Dirichlet distri-

butions that concerns modification of the density by Bayes' theorem

b
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it. the light of new evidence. This theorem too will be state .1thout

proof.

Theorem 3. If r 1 ,...,V 1 are the probabilities of the Q-

predicates Q 1,..., Q,,, and if . is the probability of

Q, if the prior density for the ,is is a Dirichiet with parameters

and if an observation of s individuals is made in which s.

have property Q1 ( sl - s), then the posterior density for the s

is a Dirichlet with parameters vlo."" v• where v' I MV + ai fcr

I

With this mathematical apparatus at hand we can reauily show that

Carnap's X continuum is formally identical to a subjectivist inductive

system when the prior on the F s is a Dirichlet density with all its

parameters equal to I/, i.e., vi M X/- for all 1.8

Consider first induction involving only Q-predicates rather than

more general predicates. When a - 0 -- before we make any observa-

tions -- by theorem 1 E (P) - 1/. for all i. If we observe a sample,

X, of size s, in which Qi appears s times then, by theorem 3,

i (V/) + a, end ' (" + a. By theorem I again:I I

"! = + '4/.

E (ri jr: - ----- (16)

-4

Since the logical width, w, of a Q-predicate is 1, (16) is clearly the

same as (14) when the predicate M referred to there is a Q-prodicate.

To deal with predicates more complicated than Q-predicates we

need theorem 2. Consider a predicate K with logical width w; -M, then,

I;
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has logical width .-w. By theorem 2 the prior density function for

FM (the probability of H) will be the one variate Dirichlet (or beta)

density with parameters v, - wk/. and y. - ( -v)X!.. By theorem I

the prior expectation of is whut it should be:

E ( (w/.) (wl,. + (K-w)Nfc) - WlX.

If we observe a sample X, of size s, that has a total ot NM instances

of M (and, therefore, s-aM instances of -M) then v! s+N

' - (K-w)XI + s - & Using theorem 1 again we obLain:

E (FM I X) (V I v + v ) a Na. + Xw/') (S - X), (17)

which is essentially the same as (14)

Leaving aside debate concerning the relative philosophical me! 't3

of the logical vs. subjective views, the subjectivist approach has tuo

important advantages over the X system. Thea2 are:

1. In the Carnapian system vi a Vj for all t and J; this clearly

much reduces the range of possible prior distributions. Or, to put

this another way, Carnap's I dimensional continuum of inductive methods

is a special case of a ,dimensional ccntinuum.

2. Second, it may be desirable to have predicates in the Ian-

guage that are not dichotomos. For example. instead if saying of

that it Is red or not red, we may wish to say that it is red, puce,

or ultramarine. If we denote by V(P1) the number of alternative, P

may take on, then the mimber of Q-predicates we have, , is given by:

7 v(P 2 , (18)
j-1
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where, as before, TT is the nmbner of predicates. Clearly the sub-

jective arpoach cen hanidle any finite value of V(.).
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V. CONCEPT FORMATION AND INDUCTION

My purpose in 'hts section is to provide an essentially Bayesian

mechanism for certain types of concept formation. It turns out that

this task is closely related to providing a subjectivistic generaliza-

tion of Hintikka's [26] two dimensional continuum of inductive methods,

and I shall begin by briefly describing his work. Next I shall provide

a sublectivistic interpretation of it then show how all this relates to

concept formation.

Hintikka's Two Dimensional Continuum of Inductive Methods

Consider a predicate M (a disjunction of several Q-predicates) and

suppose that we have observed several thousand individuals that all of

them have instantiated M, and that there exists no M' with logical %idth

less than M such that all the observed individuals also instantiated M'.

Having seen several thousand instances of M, and none of -M, we may very

well wish to assign a non-zero probability to the assertion that all of

the (infinite number of) individuals in this series exemplify M. This

cannot be done in the Carnapian system (unless M is tautologous) or in

the subjectivisitc generalization of it thdt I outlined; that is, what

is known as inductive generalization is impossible in these systems.

Hintikka's [26] purpose is to generalize the Carnapian system in such

a ,ay that inductive generalization is possible.

Hintikka defines q "constituent" in the following way: the con-

stituent C(i,j,k) is true if and only if

( W)'.(x) & (x)QW(x) & (.X)Qk(X) & (x)FQW(x) (x)kVQ WI
k k
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is true. Referring back to equation (13), C(1,3) would mean that all

individuals have the property P2 ' some have PI' and some don't have PI'

C(.) may ha.e any number of arguments from 1 to ; let us denote by Cw

any constituent that asserts that exactly w Q-predicates are instantiated.

(. ) is the number of different constituents there are with exactly w

Q-predicates instantiated. The total number of constituents, N, is,

therefore, given by:

N- 2 -1. (19)

w-l

Assume that a total of - different Q-predicates have been observed

in a sample, e, of size n. Consider a constituent C*. Following Hin-

tikka, we obtain by Bayes' theorem the posterior probability for C*

given e, under the assumption that the prior probability of a constit-

uent depends only on the number of Q-predicates in it:

p(C*e) -. p(C*)p(ejC*) (20)

wul

where p(C w) is the prior probability of a constituent containing w Q=

predicates. (Equation (20) corrects some typographical mistakes In

Hintikka's equation (2).)

Hintikka makes two assumptions to obtain the prior probabilities

p(C ) and the likelihood p(elCw). As noted, unless w p P(Cw) - 0

in the Carnapian system with an infinite number of individuals. Hin-

tikka uses as p(Cw) the (non-zero) number that p(Cw) would be in a
w w

Ij
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C;lrnapian universe with a individuals. Thus he obtains a family of

priors indexed by r4 running from 0 to m. To obtain p(eICw) he makes

the same assumptions as in the Carnapian system except that he allows

only w i.ntead of K Q-predicates. In this way Hintikka allows for the

possibilty of i ,ductive generalization. A low u corresponds to a

prior expectation of a highly ordered universe in which but few Q-

predicates are inscantiated; a high 0 corresponds to a prior expecta-

tion that almost all the Q-predicates will be instantiated. Carnap's

system is the special case of Hintikka's obtained by letting a -.

Subjectivistic Interpretation of Hintikka's System

From (19) we see that there are N - 2" - I different const tuents;

les us label them CI , .... CN letting CN be the constituent containing

all i Q-predicates. To each Ci let us assign a w-variate Dirichlet

density where, as before, w is the number of Q-predicates Ci asserts

to exist. (A 1-variate Dirichlet density is assumed to be an impulse

or 6 function.) The Dirichlet density corresponding to Ci, which I

shall call Di , is assumed to hold given that Ci is true. Di is a p.d.f.

for the probabilities of the Q-predicates contained in C1 . Let

be a vector that gives the prior probabilities of the

Cis, i.e., p(Ci) = C,. We thus have third order probabilities--C,

corresponds to the probability that Di is the correct p. for the

probabilities . If -N I I and, hence, all the other Cis equal zero,

we have the subjective system outlined previously in this paper. If

all the D s are equal for constituents containing the same number of

Q-predicates, if each Di has all its parameters equal to one another,

if all the predicates are dichotomous, and if is contained in a
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certain subset of N then the system outlined here reduces to Hintikka's

two dimensional continuum. Development of mathematical detail must await

another time.

Concept Formation and Induction

In lectures at Stanford University, Professor Patrick Suppes

developed what he calls the "template" representation of a concept.

This has been further developed in a recent paper by Roberts and Suppes

[53]. His lectures centered around the psychological problem of de-

scribing how people actually do acquire concepts. A typical experimen-

tal paradigm would be something like the following: A subject is shown

geometrical figures that differ in size, form, and color. After he is

shown a figure he must say whether the figure belongs to class "A" or

whether it does not. After making his response, the subject is told

the correct answer, then shown a new figure.

Let us assume there are three sizes, three colors,and three forms.

Each figure can then be described by a Q-predicate; by equation (18) the

total number of Q-predicates is 27. To the three natural predicates--

size, form, and color--we can add the predicate "is a member of class

'A'." Thus we have a new system with 54 Q-predicates. Suppose the con-

cept to be learned is "is aquamarine or triangular"; exactly one of the

2 54- constituents exemplifies this concept. More specifically, that

constituent is C(x)[R(x) & A(x)] & (3x)[-R(x) & -A(x)] and (x)frR(X)

& A(x)] V[-R(x) & -.A(x)]), where R(x) is "x is aquamarine or triangular"

and A(x) is "x is in class 'A'." An important question then is whethei

or not the subjectivisitc generalization of Hintikka's system can pro-

vide an adequate empirical account of human concept formation. The
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possibility of a low value for cy (or its subjectivistic equivalent) makes

it conceivable that this approach could be adequate to account for the

extremely rapid concept learning that humans exhibit.

Let me now suggest a fairly specific two parameter model for human

concept formation. The assumptions of the model are:

Assumption 1. On trial n the subject's state may be represented

by a vector S. ,SN)l'** N) where N is the number of constituents in

the system and s, may be considered the subject's estimate of the prob-1

ability that constituent Ci holds.

Assumtion 2. With probability 81, Sn 1 is computed from Sn and

the most recently observed figure by means of (20); with probability

i - Sn+ Sn .

Assumption 3. When on trial n, the subject is given a new figure

to respond to he computes from S the probability that the figure is inn

clas, 'A". [f this probability exceeds .5 he responds "A"; otherwise,

he responis "-A".

Assumption 4. All constituents containing an equal number of Q-

predicates have equal prior probabilities. The prior probability that

the true constituent will have j (I I j ! K) q-predic.Ates is given by

*I ( I - ) . (Large R2 implies rapid inductive generaliza-

tion or, in Hintikka's system, it corresponds to small a.) This as-

sumption determines S .

Given these four assimptions and estimated values of the parameters

6 and 92 , the subject's responses can be predicted from the figures he

has been shown and their classiticatiuns. It should be clear, of course,

that the model just outlined is but one of mayy possible .imilar models.
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I will close this section by posing two questions; (i) To what

extent can existing empirical models of concept formation be shown to

be special cases (or generalizations) of the model I have described?

(ii) What, if anything, would estimated values of 2 tell us about

the true regularity of the universe we live in?

I
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VI. CONCLUDING COMMENTS

I have attempted in this part to extend a subjectivistic theory

of induction in a way that allows the logical systems of Carnap and

Hintikka to appear as special cases. In the course of this effort I

have attempted to provide a definition of information that is adequate

from a subjective point of view and have extended the subjectivist ap- 7

proach to account for certain types of concept formation. Yet there

is nothing in what I have said that would provide any fundamental justi-

fication for utilizing information from the past to make inferences

concerning the future.

I will conclude by suggesting that theories of induction may be

lexicographically ordered according to how satisfactory they are. Along

the first dimension the criterion is "How well does the theory deal with

the problem posed by Hume?" All inductive syst ms are equally (and to-

tally) unsatisfactory from this point of view. Along the secondary

dimension the subjective theory is, though problem remain, probably

the best. But unsatisfactory is unsatisfactory: Hume's intellectual

successors are Sartre and Dylan.

Io
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FOOTNOTES

I realize that this is treating rather briefly a still ongoing debate

concerning the nature of probability. But entering into that discussion

here would take me too far afield.

2Two applications to psychology of the notion of information discussed

here should be mentioned; both relate to problems posed by David Hume

[31]. The first relat. to Hume's distinction between simple and com-

plex impressions. Work reviewed by Miller [44] suggests a way of making

this distinction precise. Miller describes work that indicates that the

amount of information a human can process is strictly limiLed and about

the same for different dimensions; combining dimensions provides means

for increasirg the information input. Simple impressions might be de-

fined, then, as impressions involving only one perceptual dimension,

and complex ones defined as involving more than one. The problem here

is to construct an algebra for combining perceptual dimensions and one

approach to this (that resolves an apparent contradiction inthe ex-

perimental literature) is suggested in Jamison [33). The second ap-

plication of the notions of semsntic information to ps%cIholoqic&a!

problems posed by Hume is to the problem of distinguishing between memory

and imagination. Here we might say that something is imagined if the

amount of information concerning rhat something that a person can supply

is virtually un imited. Otherwise, it is a memory. This definition

suffers from the defect. as Professor Suppes has pointed out to at, that

the more vivid a memory is, the more difficult will it be to separate it

from imagination.
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3Usually we can characterize the uncertainty in a decision situation as

the sum of H(E(C)) and H(f). If, however, f itself is not precisely

known, the uncertainty associated with alternative possible fs must be

added in, and so on.

4An important practical problem for the theory of subjective probability

is the problem of measuring subjective probabilities. Suppes [671 sug-

gests that a problem with the method of using wagers is that persons

will change the odds at which they will bet as the size of their bet

increases. A solution to this problem is to fix the size of tile per-

',)fn's bet, let him choose the odds, and have the experimenter choose

the side of the bet the subject must take (the "you divide, I choose"

principle). If the situation is such that the subect be!lieves that

the experimenter knows more about the odds than he does, the subject

will be strongly motivated to give an accurate probability assessment

regardless of the amount ht has at stake.

5Ronald Howard (291 utilizes what are essentially probability distri-

butlonr over probability distributions by considering a probability

density function ot, the parameters of another probabiliy density

function. The notion of probabilities of probabilities is regularly

used in applied Sayesi un work.

6 Professor Suppes points out to me that, though there is a r~ch body

of results in meta-mathematlcs, mathematicians apparently feel no need

to derive formal results concerning meta-matlematLcs in a meta-oeta-

mathematics. I might add, lovever, concerning the probable error ex-

ample, thlat s,-verai viars ago when I was helping design an experiment
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to measure the astronomical unit, I found the notion of probable error

in probable error rather useful.

7Laplace's law of succession is dervied from Bayes' theorem and the

assumption of a uniform prior for . " If the uniform prior is changed

to any of the possibilities given in equation (8), the following gen-

eralization of the law of succession can be derived: p (W = (n+l)

(r+m), where pr+(w ) is the (expectation of) the probability that on

the r + Ist trial u,. will occur, n is the number of times is has oc-

curred in the previous r trials, and m is the number of states of nature.

Since completing a draft of this paper. Raimo Toumela has pointed out

to me that Good [25] has discussed notions that are formtlly analogous

to f(1). Good mentions that this generalized version of the law of

succession was known to Lidstone in 1925.

3 This assertion must be slightly quaiified; the Dirichlet density is

undefined for vi - 0. Hence, though the inductive metilod characterized

by X - 0 may be approached with arbitrary closeness, it cannot be at-

tained in the subjective system. This point is of some importance,

siiac , 0 is the inductive system impliciz in the 'maxtmum likeli-

hood' estimation principle that is ratler widel used, at least in

psychology.



-97-

Part Three/Two

LEARNING AND THE STRUCTURE OF INFORMATION

I. PAIRED-ASSOCIAE LEARNING

1. ?aired-Associate LearninE with Complete Information

In tile experimental paradigm for the theories discussed in this

sect.on, the experimenter presents the subject with stimuli in random

order. Each stimulus is pairedoto exactly one of N response alter-

natives. After seeing a stimulus, the subject chooses the response

he believes is correct. After the su' .t has rade a choice, the

experimenter tells him what the correct response was. The subject

then proceeds to the next stimulus. This correction procedure is

distini;,-ished frorm noncorrectioit procedures in which the subject is

told only whether he was correct or incorrect. Noncorrection proce-

dures are discussed briefly in Part II, Section 2 with other theories

of incomplete infort-wtion. Certain Ol our proposed models for the

correction procedure bear mild resemblance to models for the non-

correction procedure presented by illward (451 and Nabinsky [471.

The objective Af a theory of PAL (paired-associate learning) is

to predict the detailed statistkcal structure of subjects' response

deta in the type of experimental paradigm just described. Theories

of PAL have the following general structure. For each of the (homc-

geneous) stimulus items there exists a set Z of states that the subject

may be in on any trial and a se" '0 of response alternatives that he

rui" choose frorm. There furthe:- vxists a set 'of reinforcin'- cverts.

Finally, there exist too functions: a function f chat map. I x ,T into

0,13 an' a function g that maps 1-k 9 ) k: into 'L,']. (Here I x X

denotes the cross product of the sets Z mad -.) Th" function f gives

the probabilities of the various responses for each state; the function

It
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g gives the probabilities of state transitions ior various reinforce-

ment. In this way, a model of PAL may be considered an ordered

quintuple, <a, N1 %, f, g>. A particular theory specifies pre-

cisely the .members of the three sets and the form of the two func-

tioas.

The remainder of this section is divided into two parts. Iii the

first part we give a brief review of eight existing theories of PAL.

In the second part we present several new theories. For each new

theory we present informally its assumptions, its basic mathemiatical

structure, a few derivations, and its relations to other theories.

Fist.ing theories of paired-associate Iear--:i.q;

The linear model. Let p(e n) denote the probability of an error

occurring on trial n. The basic assumption of the linear model is

that p(e n-:l) is a fixed fraction of p(en), specifically:

(1)~N y(e. 1  p (e)

If we make the natural assumption that p(el) be equal to (N-l)/N, then

(2) p(e) N-1 n-l
n N

Bush and lbsteller [14] described the linear model in some detail.

The one-element model. The principal assumption of the one-element

model is that for each stimulus element the subject is in one of two

states--conditioned to the correct response or not conditioned to it.

Ii he is not conditioned, then with probability c on any trial he be-

comes conditioned; once he becomes conditioned, he remains so. If the
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subject is conditioned, he responds correctly; if he is not, lie guesses,

responding correctly with probability 1/N. The following transition

matrix and error response probability vector suznmarize the one-clement

model, where C and C represent the condi ioned and unconditioned states:

C

(3) C o i

This matrix gives the probabilities of transition from one state

to the next on each trial; the vector gives the probability of making

an incorreCL response in each state. The probability of error on trial

n is easily shown to be given by:

(4) p(en) =N- (-c)

Bower [12] compared the linear and one-element models on a wide
,

variety of staristics for expe-'iments with N-2. The one-element model

fits much better than the linear model. But when N ' 2, the one-element

model performs less well. although still better than the linear model.

The two-phase maodel.. Norman [49] proposed a two-phase model for

which he assumes that no learning occurs up to some trial k; after

trial k, learning proceeds linearly with parameter 0. The trial of

first learning, k, is geometrically distributed with parameter c. The A

probability of error on trial n is given by:

(1-.)/KI for n ., k(5) p(en)N- nk
n N-1 (1_o)n-k for n > k

Clearly we cannot distinguish between the linear and one element

models by equations 2 and 4 ae taey are essentially the same; the models

predict very diffeient dependencies within the data, however.
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When 6 1, zhe equation reduces to the one-element model; when c = 1,

the equation reduces to the linear model.

The random-trial incremental model. In Normen [48], the RTI

(random-trial incremental) model postulated that on eachi trial learn-

ing occurs with probability c; if it does occur, it does so linearly

with learning parameter '. The following equation sumtarizes the

model:

(l-:)p(en) with probability c

(6) p(e , )
p(e ) with probability I - c.

As with the two-phase model, if 1 - I, the RTI model reduces to the

one-element model and if c -I, it reduces U the linear model.

The two-element model. Both the two-phase and the RTI models

primarily represent extensions of the linear model; Suppes and Gins-

berg [69] suggested an extension of the one-element model to a

two-element model. The subject is in any one of three states--C0 ,

CI , and C2 ; the subscript refers to the number of stimulus elements

conditioned to the correct response. Those not conditioned to the

correct response are unconditioned. The transition matrix and error

probability vector given below sunnarize the model:

C2  C C0

C 2 1 00 0

(7) C1  b 1-b 0 1-g

a 1-a
~N



The model has three parameters: the conditioning probabilities a

and b and the guessing probability g for when the subject is in

state C Predicting a stationary probability of success prior to

last error is one of the major shortcomings of the one-element model;

the two-element model avoids this shortcoming.

The long-short model. In their comprehensive overview of paired-

associate learning models, Atkinson and Crothers [71 proposed a

model based on the distinction between long- and short-term stores.

In state L the subject has the S-R association in long-term store

and remembers it. In state S the subject alwav:s responds correctly,

but may forget the association and drop back to a guessing state F.

State F is initially reached by 'coding' the stimulus element from

an uncoded state U; this coding occurs with pzhobabilitv: c. lie other

parameters of the model are the probability a that when reinforcement

occurs the subject goes into state L, and the probability f that an

item in state S will move back to F. The transition matrix and

error probability vector of the model are given bel"w:

L S F U

L 1 0 0 0 0

S a (1-a) (1-f) (l-a)f 0 0(8) -
F a (l-a) (l-f) (l-a)f 0 N-1

N
U ca c(l-a) (i-f) c(l-a)f 1-c N-1

The three-parameter version ef this model is referred to as LS-3;

a two-parameter version, LS-2, is obtained by setting c - 1.

Atkinson and Crothers point out that this model was constructed with
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an emphasis on reproducing specific psychological processes, though

the reason the transition from S to S should have the same proba-

bility as the one from F to S remains unclear. Both the LS-3 and

LS-2 models fit the data very well. Extensions of the LS-3 model

and a trial-dependent fc.-getting (TDF) model to account for vari-

ations in list length are presented in the Atkinson and Crothers

paper and extended by Calfee and Atkinson [15]. Rumelhart [54]

presented an illuminating overview and extensions of these models.

However, we will discuss these variations no further.

A forgetting model. Bernbach [11] proposed a three-parameter

forgetting model for paired-associate learning. In state C the sub-

ject is always correct, and in state G he is correct with probability

I/N. Immediately after reinforcement the subject is in state C; pre-

sumably if he were immediately tested he would always be correct, but

before the next presentation of the stimulus there is a probability 6

that he will forget. If the subject is in state C with probability 0,

he permanently acquires the S-R association and moves to state C'.

Finally, there is a probability 9 that if the subject guesses in-

correctly, he learns the incorrect response he guessed. If so, he

goes to state E in which his probability of success is zero. The

forgetting model is represented by the following transition matrix

and error probability vector:
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C' C C E

C' 1 0 0 0 0 

c FO (10 -)(-0) 6 0 0
(9) GN 1( -1O 0 [ 1-8 (TO'] (1-6) (N)(-) 11N

E L (l-e) (1-) 8 9(1-) j 1

Bernbach performed some experiments in which the forgetting model

does rather better than the one-element model.

This completes our discussion of a number of existing models for

paired-associate learning. We now turn to some new models.

New theories of paired-associate learning

The Dirichlet model. The name "firichlet" is applied to this

model since the generalization developed in Part II, Section 2 uses

the general Dirichlet density. The model we shall now consider uses

the one-dimensional version of the Dirichlet family known as the

beta density. The intuitive idea of the model is that the subject

can be in any state indexed by numbers on the interval [0,1]. If

the subject is in state r(O ; r 1) on trial n, he responds correctly

with probability r, and his state on trial n4l is drawn from a beta

density on the interval [r,l]. Figure 1 illustrates this.

Let us state the assumptions more explicitly:

1. The state the subject is in on trial n is indexed by a real

number r such that 0 r -. I.
n n

2. If the subject is in state rn  he responds correctly with

probability r•

2n
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r

F igi -The density for rn~
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3. Let f(r nqllr) be the density tor r n 1 given r . Thenn

0 if rn+ 1 < rn or if rn+I > 1, and

(10) f(r n+llr n)= -lrn 0-1.
n n rn+-rn

B( r, ) ( 1 -ra1 n 1-r n

if r < r I, 1 > 0. and . > 0.

The function B(or,8) is the beta function of or and 8 and is defined1

to equal f 02-1 (I-x)- 1 dx.

4. On the first trial r1  1/N, where if is the number of response

alternatives.

Theorem 1. The le-arnin Lcurve for the Dirichlet model is given

X: P(e) = N n-1

Proot: Denote the expected value of rn+1 given rn by E(rn.1jirn
).

It is an elementar'y, property ot beta densities that the dcnLt)

B(a,8) x (1-X) for 0 <'x < 1 has expectation a/o+$. Hence,

(11) E(r+llr )  r r (-rn).n n O-P

Now r is itself a random variable. The expected value of r 1 given

r is a linear function of r . But the expected value of a linear

function of a random variable is simply equal to that same linear

function of the expected value of the random variable, i.e.,

(12) E(rn) E(r) + or - E(r n)].n -+
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Thus from r1 we can find the expected valtic of r,,; from the expected

value of r, we find tl,r ex:pected value of r 3 etc. It follows that

(13) E(1-rn) - 1 -- E n E(-r "

Since 1 - r, MN- N_ by recursion on (13) it. follows that E(1-r)

N-i n-i
N rB/(O-'8) . But p(e n) is simply equal to E(l-r n); hence,

N- n-

(14) p(en) N a+, Q.E.D.

The quantity B - represents the learning rate in this

model- the learniag curve generated is the same as for the linear and

one-element models. In tact, both the linear jad one-element models

are special cases of the Dirichlet. The linear model results trom

setting = - and allowi,.g a and . to approach infinity.

The one-element model results from setting c =+- and letting a

and approach zero. The behavior of f(r n+ ) for various values of :i is

shiwn in Figure 2, where - .25 and r = .2.n

We assume that the subject fails to learn on each trial with some

fixed probability, l-r, but when he does learn, rn is given v: (10)

which results in a three-parameter generalization of the Dirichlo!t

model. Letting r - I gives the two-parameter Dirlchlet . If r - c 0 1

and - n letting -., approach infinity g:ives Norfa; 'n RTI model as a

L a se ol ti Ltirce-paramCtCr iricIe! nodCl. ite thtree-parameter

Dirichlet model is an example cf witat Howard cajlI .a 'Msrkovi.,n

dynamic inference' model, with a cont i -. ws-state ,ark v chain.

1 10.' H .A. *S-S tems An~ilIvs is of * .-,rko~v Prc ~ ,to inne.-Jir.
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Functions graph~ed sche~matically

a 25

a-.02

02

C I
0 .1 .2 .3 .4 .5 .6 .7 .8 .9

r

F. -f r. 1 rnm -2) for - .25
and several values of a
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The elimination model. The basic assumption of this model is that

the subject learns by elimii.'t1,ig -esponses known to be Ancorrect. He

eliminates each response possible on a given trial with a fixed proba-

bility, c, independently of whether he eliminates other incorrect

responses. More explicit 1:, tCe asstuipt io:is of tlie mod,! are:

1. If there are t response alteriat iyes, The subiect can be in

any of N states labeled from J to N*, where N* is the numbei

of wrong responses (N* - N - 1). If the subject is in state i

(0 -i . N*) , ie has i possible wrong responses left to 01i iinate

2. If the subject is in state i, the probability that he will

make a correct response is 1/i41.

3. If the subject enters a trial in state i, after being rein-

forced he eliminates each of the i remaining incorrect responses with

probability C, independentl-y of the others.

4. Entering trial 1, the subject is in state I*.

P few definitions are usefal before deriving the learning curve.

The vector Sn - (sO I s (1) Sn W "" i, the row vector

that gives the probability of being in state i on trial n. The tran-

sition matrix T and response probability vector E are

defined as follows.

(1)C 0 0 . for 0wI

For N " 4, T and E ar,- as follows:
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0 1 2 3

0 1 0 0 0

(16) T 1 1 l- 0 0 1/

2 C2 2C(-) (-C) 2  0 2/3

3 C 3C2 (-c) 3c(l-c) 2 (1)1 3/4

L

Theorem 2. The learnin curve for the elimination model is

rgiven by

p(e I - -

Proof: First, it is evident that p(en) = S E, where S is the
, C

• T:"- 1
state probability vector on trial ;, given h S S T S is"'n 1 1

simply equal to (0, 0, ..., 0, 1). To proceed we must prove that

T t(n)", is given by t n  -( ) -1 - 0l-) n I (l-e)nj if j -- i

and t =
n ) . 0 otherwise. The pruo' is inductive. Clearly the as:3er-
ii

tion is true for n - I , wliere !i is i le power oif the natri-:. Let iis

asqume that it is true for k - n - 1: that is, amSumO L -

( ) "(l-v!) - for i j with ",,- (H-) henceforth it is %nde--

stood that for I > i, t. equals zero. Then, rniltiplving T -  vT
(:i

wt -btain the gencral c:-.pression for T': T, - T n  ( ) where:

3)(.) .- (1v) i-k i k k-i( 1 7) t~ i ( k ' ( ) c' -)

Since . k ). nd sc i'e ir:its iof tb:,_ s, , .* 'Cv b

changed to ,and i beawu the nJtrix is tri.ingi uii,

This pr-of was worket' out with thu help of "ltls Deborah I-;aon,
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i
(l) (n)= E i -)-(_~ 1 i-k ()k-j

i j kI

We now change the index of suar-tion to a = k-j and let d represent

i -j . Therefore,

d
(19) t (n) i () ¥I.)JE 

(d ) (ly)d-a (yc)a

ij a.,
a=0

= () [y l- ] _'l ) - v d

= ( '( -I)j  I l-) i -j

= ( ) (i-,) nj  [I - (!-,)n]
i -

This completes the subsidiary proof that t- is given by

I( ) (i-.) - 'j. ()-C)'j if
(20 t n )

ij =0, 
otherwise.

n-I n-i
Mltiplying S1 by T gives S n SIT where

(21 $(j ) "R (). [ -1-nl] -j (i-C) (n - l)j

hiltiplyinp, this row vecter )y the cnlumu vector F, we obtain:

(22) s = 1E -j/j1 (" , (i-)

j=0

which can be transformed to:

I



( 2 3 ) /~ t* 4 1 (* 4 i k ( -li

n-

k-i n1s (N*+i1) (k

)niN*+l1- [I (l-E~ I Q. E. D.

(1-E )n (N*+l)

The leariing curve is the onily statistic we shiall derive for the

elim~ination model. Before going on to extensions of thiis model, we

should point out the following: First, when N=2, the elimination model

is form-ally identical to the one-clement model, and, second, when N>2,

the Liodel predicts increasing probability of success prior to the trial

of last error. Thiis model is compar2d a~gainst data presented by Atkin-

son and Crothers in Table 1.

The acquisition/elimination moueis. These models are two- and

three-pa.rameter generalizations of the elimination model. Thle basic

notion behind the two-parameter acq'iisition/elimination model (AE-2)

is that there is some probability c that the subject learns the correct

response on any particular trial. If hie fails to do so, hie eliminates

incorrect responses with probability C as in the elimination model.

More explicitly, AE-2 makes the same aissumptions as the elimination

model except that AsSUmpt ion 3 is clianred Lo:
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TABLE 1

2 c
Minr'i. ~ Values for Four One-Parameter Models

Experiment One-Element Linear Elimination Conditioningy Strength

Ia a30.30 50.92 15.03 8.11

lb a39.31 95.86 17.63 14.41

IIa62.13 251IJK 32.71 31 S0

IIb150.66 296.30 101.11 95.26

1V 44.48 146.95 31.76 39.37

Va b102.02 201.98 56.52 53.74

Vb b246 .96 1236 .15 97.-50 85.69

VCb 161.03 262.56 117.76 90.26

Total A36 .39 1542.02 470.02 413.64.

aThree-response alternatives.

b Forrsoe alternatives.

c otlY,2for other models: 2-parameter: RTT, 284.39; 2-phase
493.59; LS-2, 147.16; 3-parameter: LS-3, 137.26; 2-element,
259.56.

Data from Atkinson and Crothers [71.
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3' If the subject is in any state i, then after he is reinforced

lhe acquires the correct response with probability c. If he fails to

acquire the correct response then, with probability F,, he eliminates

each of the i. remaining incorrect responses, independently of others.

The following transition matrix, T' t.' characterizes AE-2:

ii
c- (l-c) ( ) , for j 0

(24).. = (l-c)(t) € -  1,) ,  [r 1sj isN

0, otherwise

For N4, the matrix is:

0 2 3

0 1 0 0 0

I c-+(l-c)E (l-c) (1-) 0 0
(25) T' -C

c+(1-c)c 2  2 (l-c)(e) (l-f) (l2c)(l-e) 0

3 c+(l-c)F 3  3 (1-c) C2 (I-E) 3 (l-c) C (l-) 2 (lc) (lC)3j

Model AE-2 reduces to the elimination model if c=0; it reduces to the one-

element model if C=0 or N=2. It can be extended to three parameters (AE-3)

by assuming that when the subject learns an association (with pcobability c)

he may pick up several more than just the correct one. The number lie ac-

quires is binomially distributed with parameters a and i, i being his

state index. For example, if the subject is in state i and it is given

that he learns on a particular trial, then with probability a he acquires

just the correct response. Inttit i'el,,', -, should he cloe to one. The



-114-

assumptions of AE-3 are the same as those of the elimination model and

AE-2 except that we substitute 3" for 3':

i". If the subject is in state i at the beginning of a trial

then, when reinforced, with probability c he acquires the correct re-

sponse and up to i incorrect responses. He selects the number acquired

with a binomial distribution with parameters a and i. With probability

I-c the subject acquires nothing, but lie eliminates incorrect responses

independently, each with probability E.

The transition matLix for AE-3, T" = [ti'.1, is given in component

form by

I c(1) &'- (l-a)j + (1-c) ( c) (') i -  (l-E)' for 0 & j I i .

(26) t 1 0, otherwise

if Oe-l, AE-3 reduces to AE-2; if c=0 or c=l, AE-3 reduces to the

simple elimination model. The chief motivation for the AE-3 model is

that it can give a bimodal transition distribution, which the binomial

distribution in AE-2 cannot do.

An elimination model with forgetting. In the incorrect-response

elimination models discusned so far, there has been no provision for

regressing to a state ir. which the subject responds from m-or-__ wrong

responses, that is, for forgetting. It is plausible to assume that

during the intertrial interval, after the subject has eliminated per-

haps several incorrect responses, he might forge.t which ones he had

eliminated, thus introducing some more wrong responses. The basic

assumption of this forgetting model is that the responses learned

previously to be incorrect are reintroduced, independently of one
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another, with some probability 6. More explicitly, the assumptions

are:

1. If there are N response alternatives, the subject can be

in any of N states labeled from 0 to N*, where N* - N-i. If the

subject is in state i(O _j i S N*), he has i possible wrong responses

left to eliminate.

2. If the subject is in state i, the probability that he will

make a correct response is l/i-:1.

3. If the subject enters a trial in state i, after being re-

inforced he eliminates each of the i remaining incorrect responses

with probability e, independently of the others.

4. Unless the subject is in state 0, between trials he forgets

each response previously learned to be incorrect with probability 6,

independently of the others. If the subject is in state 0, he stays

there.

5. When the subject enters trial 1, he is in state N*.

The subject enters trial I with state probability vector S,

(0, 0, ..., 0, ..., I) by Assumption 5. Shortly after reinforcement,

the subject has state probability vector S i given by:

(27) S I W SIT,

where T is the transition matrix given by (15). During the intertrial

interval the subject may forget; his forgetting or reintroduction is

represented by a matrix F that operates on S'. F u [f ij is given by:

----1
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i fo = !

f00 1

foj = 0 for 1 - j - N*

(2) f = 0 for j < i

f i =  ) 1 (1 -5) j for 0 < i ! j 7 N*.

For N-4, F is:

0 1 2 3

0 1 0 0 0

o 2
(29) F 1 0 (2- ,,(I-5)

2 0 0 (1-')

3 0 0 0

Thus S S'F = S TF. Or, more gencrally,
2 1l 1

(30) S S (TF)

and

(31) Si ) (TF)-

Clearly this forgettin, model could be .eneralized by replacing

T %,' th! T ' (24) ),.- Iv.. T" (.. ).

A conditioridii strent model. Atkinson (61 suggested a

genera lizat ion of st imuius-sampling theory that cmbed i es the not ion

of 'conditzrnirg strength'. Eoc'. -cspoise alternzative has associated

with i! a cc ,ditionit, strength; thi total available amount of con -

dit ning strcnl'jC remains Lonsta it over trials. The probabiliL'v that

an, ivOO v, wi;polle \~ 1 ', made is its co:idit innin-. s;t:-e"c!' d v:dod
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by the total available. Our model specializes Atkinson's work to

paired-associate learning and generalizes it to include richer ways

of redistributing conditit.iing strength after reinforcement. The

assumptions of our model are:

1. If there are N response alternatives, the subject can be in

any of N states. If the subject is in state i, (0 i N-l) , the con-

ditioning strei.gr'. ot the corrcct response is N-i. Tbe total available

condiLioniii .trength is N.

2. The T obabiltty of a correct response is equal to the response

strength of the correct response divided by total response strength.

That is to say, if the subject is in state i, his probability of being

N-ii
correct is -, and the probability of being incorrect is

IN, N

3. If the subject is in state i on trial n, on trial n+l he can

be in any state between i and 0; which state he enters is given by

J bi ,Oiiial disiributio!,' wit), parameters i and

4. On trial 1, i = N-I.

The transition matrix of this model is identical to that of the

elimination model; all that differs is the response probability vector.

The matrix and response probability vector are shown below.

0 1 2 3 . . .N-1

0 0 0 0 0 0/

(1-0/ 0 0 . .O 1I/N

(32) T* ()2 2(1 -C) (-a)2 0 . 0 E* = 2/N

3 (*) 3 32(1) 3 ci(l-o)2 3

3 ~ ~ ~ ~ ~ 1, 3r. (I ,,( CO 0-1 0

N- N-1 N-1

N- o(i-)) L N
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The learning curve is given by:

(33) p(e n) - S 1 T*(n-l) E*

Tk (n -l) is given by (20) and S1 Tk (n-1) by (21) where N* must be re-

placed by N-I. IMltiplving SIP*(n 1) by E*, we obtain

N-i N-I-j

(34) P(en) j/N (l_?)n -I (l_)j(n-1)

Ignoring N in the denominator, what r-ma-.s is the expression for the

expectation of a binomial density with ,ariieters N-I and (!- )n- l .

As this expectation is (N-I)(I-) n - I ,

(35) p(e) = N-I n-I

which is the same learning curve as that for the linear and one-element

models.

Clearly two- and three-parameter generalizations of the conditloning

strength model are obtained by using the nmtrices given in (24) and (26)

instead of 7*.

Co jartson of the one-parameter elimination and condttiontjn srength

models. Atkinson and Crothers [71 pcesented results from eight PAL

experiments, in which three have three response alternatives and five

have four response alternatives. Parameters are estimated by a minimum
2

X technique from the 16 possible sequences in the data of correct and

incorrect responses on trials 2 to 5. Atkinson and Crothers give results

for rmny modcls; their results for the linear and me-element models are

shown in Table I (see p. 16). Also shown in Table I are the iesults we
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obtained for the one-parameter elimination and conditioning strength

models. Table 2 shows the parameter estimates. Our theoretical pre-

dictions were obtained by computer simulation.

-I
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TABLE 2

Parameter Estimates for Four One-Parameter Models

1 One-Element Linear Eliminjtion Conditioning Strength
Experimentor

.383 .414 .50 .55

b .328 .328 .56 .60

EI .2 j .2,,') .9 .9

III .203 .253 .61 .70

IV .281 .297 .52 .66

Va .125 .164 .74 .84

Vb .172 .250 .62 .70

Vc .289 .336 .52 .66

Data trom Atiituur, ad Crother [7].
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2. Paired-Associate Learning with Incompiete Information: Noncon-

tLngent Case

The gereral structure c-onsidered in this subsection is paired-

associate learning with multiresponse reinforcement. We deal here with

noncontingent reinforcement, and then, in the next subsection, we deal

very briefly with reinforcement contingent on the subject's response.

On each trial the subject responds with one of N alternatives. He is

then reinforced with a subset of these N alternitives consistir' of the

one correct response and D distractors, of cardin litv A in all (jhere

A - D+l). If A is one, then the paradigm is exactly that of determinate

reinforcement just considered. If A is greater than one, then on any

single trial the subject cannot rationally determine the correct re-

sponse. On each trial the correct response is reinforced. The D dis-

tractors are selected randomly on each trial from the N* possible wrong

responses. Thus over trials the correct response ;ill be the one re-

sponse which is always reinforced. The subject's task i to make as

many correct responses as he can and to learn the correct response as

qutcklv as he can.

Normuative model. Given the ithuvr paradim, or siome of the ex-

tensions, it Is necessary to make predict. ons about the optimal be-

havior of a subject with perfect memory. Perfect memory of the entire

reinforcement history is not required for normative behavior. If o..

each trial the reinforcement gets are intersected, then only the re-

sulting intersection needs to be rem-nbered. Thus if on trial I the

subject is told that the correct response is among ,. b, c, end d,

where A is 4. and on trisl 2 that the correct'response Is among a, b.

c, in i e, he need only remember a, b, and c, the members csf the in-

!ers, t o'n in '-A ',e t:is tri il 1 . lie thne Intcer r~tm -Pt vith



I.eni ;e' vior rem-ni, q-. 1uccessive relrtor,: Tf-nts an( ! et se-

tions Pven.:ualiv wti .ea6 tc Lne cnrrpct rebponse. The task nciw is

o describe t,.- 'even u3liy'

Let N states flJ,...,N* be defined a for the eliminatiGn models

in Part iI, Section 1. Thus state i is the state of having i wrong

responses, plus the correct one, that remain in the intersection on a

given trial immediately before making a .sponse. The subject responds

from this set of i+l responses, and then is shown A reinforcers. Since

the sublect is assumed to be acting normatively he intersects the new

reinforcement set with the old intersection and remembers the resulting

intersection until the next trial. The number of wrong responses noi,7

in memory is the cardinality of the intersection minus 1, and this is

the number of the state in which the subject enters the next trial.

Obviously J, the index of this new state, cannot be greater than i,

which after the first reinforcement cannot be greater than D.

Letting NN - Innij ] be the transition matrix for the normative

model, the general expression follows immedirlely by considering the

transition from statr i to j as the event of exactly J out of the D

reinforced distractors being amonq the I distractors in the previout

intersection.

Thus we obtain

1D (i)4 (N*i
j ) ffor 0 < j i < N* and J < D

(36) nn = (N*)D

0, otherwise

where (a)b = (b) b! = a(a-) (a-b+l)



The ncrative transition matrix And error vector for A-2 are given a6

an xample.

o 2 ... N*
0 i 0 0 ... 0 0

I * N* 0 IF
(37) NN A•2 E

N* I* 0 0 1+*

0 1 0 OJ

if Sn in the state probability vector as before, and the subject again

enters trial 1 in state Na, by virtue of intersecting the reinforce-

ment subset with the entire set, the subject must enter trial 2 in

state D. Thus

(j) 1 ,if j - D(38) 9
0 , otherwise

This equation also can be obtained directly from the transition matrix

in (37).

Although states A through N* are irrelevant except for entering

6rate N* on the first trial, they will be needed later, and thus for

convenience are introduced here.

The equation for the state vector is given below:

(39) Sn a S1NNn 1

Letting Sn  [S', S"] with the partition after column D, and letting

NN [NN. g, with the partition after column and row D, we obtain
NN



0-2
(40' 'S&N~(~2

n .

We now derive the normative learning curve. As before, tne prob-

ability of at. error on trial n is found by multiplying Sn and E; thus

i*( s n-2 D . J
(41) P*(en) nn D M

The powers of the NN matrix fir A - 2 givea i. 37) are reacily

found, and an explicit solution to the learni- 6 curve is possible. The

power of the matrix with the extra states eliminated is given below.

0 1

(42) (NN')n 0 1 0

1 n n

Thus the learning curve Lnd total errors are obtained:

N* n-i -~ ,Nn I

(43) P(e ) = i-

ni n-2

N*(3N*.l)
(44) E(total errors) "n-I P(e) 2N(N*-l)

This analytic solution for A-2 is given only as an example; numer-

ical solutions for several specific N,A pairings are included in Part

Four/Two. They are used there to compare real subject performance d-,th

the normative model.

At this point extensions of some models which do not reduce to the

normative one are discussed. The normative model will be tmed later in

extensions of other modeis.

r



One-element model. Several extensions of the one-element modri

outlined in Par, Ii, Section 1 are possible and are connidered here.

An alternative generalization is discussed later as a special case of

another model. The assumptions of this version of the one-element

model are;

1. On each trial, the subject is either unconditioned or condi-

tioned to exactly one of the N response alternatives. The unconditioned

state will be denoted C; the state of being conditioned to the correct

response will be denoted C; and the state of being conditioned to any

of the N* incorrect responses will be denoted W.

2. If the subject is in state C, he makeR each response with a

guessing probability, 1/N. Otherwise he makes the response to which

he is conditioned.

3. On any given trial, with probability 1-c, tb reinforcement

is ineffective and the state of conditioning is unchanged. With prob-

ability c the reinforcement is effective. With effective reinforce-

ment, if the subject is in state C, he conditions with equal likelihood

to any one, but exactly one, of the A reinforcs. If he is in a con-

ditioned state and the response to which he is conditioned appears in

the reinforcement set, he romains conditioned to that response. If the

response does not appear, and If the reinforcement is effective, he

rejects the response to which he was conditioned and becomes conditioned

to exactly one of the responses reinforced on that trial.

4. Entering trial one, the subject is In state C. Thus for the

one-element model the transition matrix and error vector are:

Ii
rq
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C W C

Cf! - 00

c i o o]o

(45) , *.*D c(N*-D) 0 Em I

1 D 1
A ALY

By raising the transition m&trix to the (n-1)st power, the

learning curve and expectation for total errors are found to be as

follows:

(46) P(e N* c (N*-D)
n - n

d46 P -n "T 1 -T T ,- - and

(47) E(total errors) - c(N*-D

No other statistics will be derived. The most obvious test, however,

is not the learnirg cirv 4tx-lf; h)'t the prediction of the run of

errors while the subject is in state W. Once the subject moves out of

state C, no successes are predicted until he learns.

It shc',ld be noted that the one-element model does not reduce to

the normative model for any value of c. As c increases, the probability

of conditiouing wrongly Increases at the same rate as the probability

of conditioning correctly.

An intersating extension of the one-element model has been worked

out for A that varies in size on each trial fror. 1 to N, with proba-

bility w a that A - a. The basic assumptions of the model are the same,

but the state transition probabilities are altered by the experimental

change. Let



(48) B - p (Wrj) )

Then, if the learning curve is analogous to that wirh renet_- . A, we

should expect

N* Bn-l
(49) qn B

We now prove this. Let M - P(W n+ I Cn). So P(C-n+ I ICn ) remains 1-c.

Then by raising the trausition matrix to the (n-1)st power, and as-

suming the subject starts in state C,

(50) P(W) Mi(lC)n-1

But, since

(52) Mm ~ --
a a

(53) P(W) - -N[(-C)n-1 - Bn-l].

Thus,

(54) qna P(Wn ) + N- 1(_c)n-i NI n-i

Linear models. Let pn a (Pl,n@ P2,no "." PNn represent the

response probability vector on trial n. That is, Pi,n is the proba-

bility of making the it h response on trial n. N is the number of re-

sponse alternatives. A linear model for learning asserts that Pn+.

Iq



is a linear funkton of pn; the eyact nature of that linear function

depends on the reinforcementi Consider as an example a situation with

the two response alternatives, a1 and a2P where aI is always correct.

The linear model for this situation is represented by a transformation

matrix, L a [Ia * ['' '. The vector pn+l is given by the follow-matixL -[£j ]  1-6 h

ing expression:

(55) (Pl,n+l' P2,n+ ) - (Pl,nI P 1-6 el.

The elements of the matrix L clearly must be independent of pn or

the model would be nonlinear. For learning _o occur, e must be greater

than a.

In th.., example above only one reinforcement is given (i.e., this

is the situation considered in Part II, Section 1), hence, only one

r1-1r4-. -P:'riv. Tn goneral thp rrAna 4 #!c... ntrix must be indexed

by the reinforcement E. The class of ,all linear models corresponds to

the class of all transition matrices L(E) - [Iij(E)] such that:

(56) ij(E) > 0 for I < i,j ! N

and

(57) t ij (E) - 1 for 1 < i <N

where E is a particular reinf,. :cement. A linear model specifies for

each reinforcement E a matrix L(E) such that

(58) (pn+1 I PnE) Pn L(E),
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as well as a starting vector, p.- without placing farther conSisints

on L, we have an N x (N-I) parameter model. :o pare these down to a

single parameter, we make foir further assumptions. The first, third,

and fourth aasumptions seem Indispensable; relaxing the second would

give a somewhat more general model. The assumptions are these.

1. Relabeling the response alternatives in no way affects the

predictions of response probabilities.

2. If ai c En, where En in the subset of the response alternatives

in the reinforcement set on trial n, then ii(E n) - I. In the example

of (55), this corresponds to assuming a - 0 instead of simply assuming

3. If rc E then p P

4. p, - (11N, 11N, ..., 11N).

The preceding assumptions limit us to two distinct one-parameter

twcdels. To see this, consider the N-4 with A-2 case. For convenien.e

we consider that the first responiit is correct, i.e., it is alwuys in

the reinforcement set. Each of the remaining three responses appearr

in the reinforcement set with probability 1/3. The two pos3ible rein-

forcement matrices for when first (correct) response and the second

response are reinforced are given by:

S 0 0 0]o 1 0 0o0

(59) L (1 ) 0 1 0 0 adL(2) 0 1 0 0L ) /2 a/2 1-o 0 a/3 a/3 1-a */3-

c/2 a/2 0 l-2j 1*/3 a3/3 1

The values of the first two rows follow from Assumption 2. Since the

models are linear, none of the pn,i can appear in the matrices. From
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Ashumption 3, 0 < 1 and, from Assumption 1, the c'-stant a appearing

ir row 3 must have the same value as the a in row 4. The tLansition

Matrix L(I  follows if we assume that the decrement In any response

alternative not reinforced is spread evenly auong those that are rein-

forced; L follows if we assume that the decrement is spread among

all the rest.

Let us now derive the learning curve for he L(I ) transition matrix.

As there are three equiprobable reinforceme[> s, and dgain a9urmnng that

response 1 is correct,

p) 1/3 (1 + 0 P + P + ),n+l 1l,n 2,n 3,n 2 P4 ,n
(6)+13( + a + 0 • + •P4n

(60) + 1/3 ( Pl,n P2,n P3,n4,

1/ ( + + 0 + a4n1/3 (1+ P . P2,n P P3,n +0

or

( (1) + (I n(61) Pl n+l ' P],n (1- Pl,n "

From this recursion and Assumption 4, it foll-wo that

(62) (1) .

Using similar arguments with the L(2) transition matrix, we find that

(2) 1 2a n -_
(63) PL,n l - "

Thmse results Sereralize to arbitrary N and A. We continue to

assume that response 1 is correct. The following recursion gives

Pl,n+l

(64) P P + P L
P1'n~ , Pln i 3
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where L is the proba~kliy of each reinforcement set, K is the number

of times each p, appears in the generalP7: tion of th sum given in

(6O) and J is the number by which i must be diivi'ed. This i,,mber

depends on whether the decremen- 13 spread among til iespnnse alter-

natives or only among these reinforced. L is equal to (A_) K equals
N- 2
(N- ); and J equals A ov W-]

Under the asstuption that the decrement is spread only among those

reinforced, i.e., J-A, the learning curve is:

(65~ (P1) 1 - "_I ( a N-Anl(65c) Pi,n+l N A -

Under the alternative assumption, J - N-I, the learning curve is:

(65b) P(2) . I JNI aN- -
l.n N (N1)2

Beford we Ieive the lineaz models, consider a geometric Interpre-

tatiou for the N-3, A-2 case (in which it makes no difference whether

tht decrement is spread to only those reinforced or to all). The tri-

ang]e ABC in Figure 3 represents all possible vi.) as of p one partic-

ular value io shown. Assume -hat response@ 1 aad 2 are reinforced.

Let S b, the point on the line AB such that the vectors S - p ar

perpendicular to AB. Then the linear matrix models previously deve-

oped are equivalent to the geometric assertion that P 1  Pn *

Thus the area of triangle APnB is decreaSed by s ixe.' iaction. whereirs,

in the determinate case, d length was decreased by a fraction cv.
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C
(0, 0, 1)

P n

(0, 1, 0)

Fig. 3 -Geometric interpretation of the linear models



General DIrichlet model. As before, there are N response alter-

natives, A cf which are reinforced on every trial. One of the A is

orrect; the remaining A-i are chosen randomly from the N-i incorrect

responses. Let the veczor r(n ) - (r I , r ... , r ) give the

probabilities of making various responses on trial n. Clearly,

fzn)  r' N
(66) r - I and r 0 for 0 < N.

Let R be the set of all possible vectors r (n; R is, then, a simplex

in N-space. Our purpose first is to describe qualitaLively the effect

(in) Cnlof reinforcement on r " The vector r n+ 1/ will be some point in the

A-dimensional simplex in R whose points are linear combinations of

L(n) and the unit vectors corresponding to the responses reinforced.

The simplex generated by r (n+ l) is denoted A*. Figure 4 shows the

case Nw3, A-2 when responses I and 3 are reinforced.

The basic assumption of the general Dirichlet model is that the

value of r (n+l) given r(n ) is a random variable distributed according

to at- A-variate Dirichlet density over the region A . A further as-

sumption is that this density is symmetric with respect to the responses

reinforced. More explicity, the assumptions of the theory are:

1. The state the subject is in on trial n is indexed by a vector
(r) C) C)(n)
r . (r (n), r2  ... , r (n)) whose components are such that Equation

(66) is satisfied.

(n)2. if the subject is in state r he makes response i wi.h prob-
ability rn)

3. The density for r (n+l) given r (n) is an A-variate Dirichlet
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r3

Fig.4-Region in which rQ~)wllb on
if responses 1 and 3 are reinforced
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!*
density over the previously defined region A with parameters alp a 2

aA, and 0. (See Wilks [73] for a gener-. discussion of the

Dirichlet density.) Further, a -1 aj a a for 1 4 1, J ! A.

4. r(1)- (IN, 11N, .. , 11N).

The A-variate Dirichlet density i. defined on the standard region

X such that xi > 0 for 1 < i -( A and t x1 (< 1. The algebraic tangle

involved in translating the region X into the region A may be avoided

by considering only the marginal density for the probability of the

correct response (which probability will be denoted r(n) . Consider

Figure 5. The region DEC is the straight on projection of A (from

Figure 4) onto the r1 - r3 plane. The region X is the region BDC.

Let the correct response be 3. All we need know is the marginal den-

sity along the line DE. From Wilks [1962, Th 7.7.2), we find that

in this case, with A - 2, the marginal is a beta density with para-

meters a and a + $ and hence with expectation ai(2a + 8). In general,

the marginal distribution is a beta distribution with parameters o

and (A.-i)a + 0 and hence with expectation ai(Aaf + 5).

From here the derivation of the learning curve strictly parallels

the develor ent in Subsection 1.2.

(67) E(I(0+1 ) -E(r~n)) + -A'[ - E(r ()J
c AO+O

Repeating the arguments of Part II, Section I we find, for A < N:

(68) P(en 1) ( n.N-i/N.

Notice that for fixed o , and N, increasing A decreases the learning

rate, as it should.
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D

E is the projection
of '(n)

r 3 r

r-E

B 0  r,-

Fig.5-The projection of A* onto the r, -r,, plane
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Eiiminatio modeIs. All e imination mode's generaIi :e similarly

from the models in Part II, Section 1. First the generalization of the

one-parameter model is given, followed by t.l'_ others in less detail.

The a8ssamptions for the one-parameter elimination model are the

same as tiose in Part II, Section I with the condition that the subject

can eliminate only the responses on a trial that have been shown to be

incorrect. With determinate reinforcement this c_.-ition could be

introduced, but it would be inconsequential because on every trial it

is possible to transit to state 0, that is, it is possible to eliminate

all wrrong responses. With -mltiresponse reinforcement the subject

cannot always elieiinate all wrong responses. If the subject narrows

the correct response down to a, f, or g, and is shown a reinforcement

set of a, b, e, and g, then the best lie can do is to eliminate f. Thus

the new transition probailities are tied to the normative transition

probabilities for the estimates of the 'lest possible, or norative,

move. More explicltlv, letting TT - [tt 1 be the multiple response

eiiD~lJOIdill LradnsittoalLtrix,

(69) tti" P(staten+ I  lstate n = i)

SP(state J stte i, normitive =k)

.P(iiurm. =k[sL,,,e = i)

The sum is only to 1, a the s biect can nc.,e no Oirtier t';'n the

nor ative move. The second term in the stum is obviously just the

normative traisition probai.)ity. The first term is the probability
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that if you start with i wrong responses and i-k can be eliminated, j

v.rong responses remain. Thus, J-k responses which might have bee

eliminated were not. This term is equivalent to the determinate re

inforcement probability of transit from state i-k to state 1--k.

Thus

(70) tt ij t-k j -k nn ik
k-o

Here the use of the 'extra' normative states is seen. If the subject

by incompletely eliminating wrong responses is in a state between D

and N*, the normative probabilities for moves out of these states are

needed. While TT(- [tt 1j] ) can be written in -rms of N, A, and e

instead of as it was in '70), the terms do not :educe considerably,

and we feel the above fornmulation is conceptually clearer.

The error probabilities, given the state, are the same as before,

and thus the learning curve is directly anala- s.

N*
-n-lE n-I

(71) P(C) = S t ,T E t

The generalization of the AE-2 and AE-3 modeis Is the same as

that for the one-parameter elimination model. 'n ('()), for tt sub-

stittute tt' or tt", for t substitute t' or t", and in (71) make the

same substitutions. TT' and TT are then the new transition matrices

for the multiresponse reinforcement version of the AF-2 and AF-3

models, respectively.

te AL-2 moJel wit., . iet equal to 0 (no elimination occurs) is

an alternative extension of the one-element model. Here with prob-

abil ity c the subject acquires, or conditions to, tie t ntir. ;roup o f
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responses that :ere both 'n memory and in the current reinforcement

set. This generalization reduces to the normative model if c is set

equal to 1.

The generalization of the elimination-ferg>Liaiig model is compar-

able to that for t1,e other three elimination models. Since the incom-

plete information affects only the number of responses possible for

elimination, not the forgetting given the state immediately followJing

reinforcement, only the T matrix, i.e., the elimination natrix, is

affected. The effect is precisely that of the elimination, model. Thus

if rT is defined as in (71) the forrixilation of the model is the same as

for the determinate reinforcement case, su',stituting TT for T

Conditioning-strength model. The generalization of this model is

precisely parallel to the -,enerallzation of the elimination model. It

does not reduce to the normative model, because of the difference in

response assumptions. Thereiore as c approaches 1, and the transition

matrix approaches the normative matri:, the conditioning strenth model

predicts learning faster than that predicted by the normative theory.

Needless to say, this prediction could not hold in Fractice, and the

model needs investigation for more intermediate values of e.

I

I
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3. Paired-Associate Learning witE a Continuum of Response Alternatives

In the experimental paradigms discussed so far, subjects select

their response frcm one of a finite (and usually small) set of alter-

natives. Linear and stimulus-sampling models for situations involving

a continuum of response alternatives have been proposed by Suppes [63,

64]. A brief description of experiments run by Suppes and vrankmann

[68] and by Suppes, Rouanet, Levine, and Frankmann [70] give a feel

for the type of experimental setup we shall now consider.

In thesa xperiments subjects sat facing a large circuiar disk.

After the subject responded by setting a pointer to a position on the

circumference of the disk, he was reinforced by a light that appeared

at some point on the circumference. As the subject saw exactly where

the light flashed, i.e., what his response 'should' have been, rein-

forcement was determined. In zhese studies reinforcemenL was also non-

conuingent. The reinforcement aenmity in the 1961 study waa triangular

on O-2 4; in the 1964 study it was bimodal, consisting of tr~angulsr

sections on 0-w and w-2v . By reinforcement densita we mean the prob-

ability density function from which teinforcement is drawn. For ex-

ample, if f(y) is the reinforcement density, the probability that the

reinforcement will appear between a and b is J f(y)dy, and this prob-

ability is contingent r- neither trial number nor the subje-+'s previous

response.

The experimental paradigm just described corresponds more fully

to probauility learning than to PAL and will be -onsidered ;g:Ain later.

Variations of it, however, correspond to PAL.
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C m lete inforr.ation We consider a list of length L of distinct

stimuli (trigrams, for example). Each stimulus corresponds to a single,

fixed region on the circumference of the experimental disk. The sub-

ject is shown the stimulus, indicates his response with his pointer,

is shown the region considered correct, and then is shown the next stim-

ulus. His response is considered correct if it falls in the reinforced

region; otherwise, it is incorrect. We wish now to derive a learning

curve for the subject.

Denote the center of the correct region by e and let the correct

region extend a distance a on either side of e. The subject's response

is given by a density rn (x) for trial r. If the subject is known to

be conditioned to some point z, then the density for his response is

a smearing density k(xlz). The parameter z itself is a random variable,

and we shall denote its density on trial n by gn (z). The conditioning

assumption we shall make is that with prOhability 1-e the parameter of

the subject's nearing distribution makes no change after reinforcement,

and with probability 8, z is distributed by an 'effective reinforcement

density' f(y). Subsequently, we shall consider two candidates for

f(y). First, observ.- what happens to the reinforcement density g(z).

(All these matters are disL-:4,', in de:ail in Suppes !Q591 wtth a

different interpretation of the effective reinforcement density.)

TVi dcns.L,." clj: c; ic l 'i. wax"

(72) gn(z) -(1-0) gn(z) + 0 f(L

If we assume that g1 (z) is uniform ( 1/2 w), we find from the above

recursion that

(71) g (z) - (l-e) n-/2% + [l-(l-e) n ] f(z).
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The probability of being correct on trial n, p(Sn), iq given by

271 e+a

(74) p(S) f */ k(xlz) gn(z) dx dz

0 e-ci

Two plausible assuaprionG concerning f(y) are:

(75) fl(y) - 6(y-e),

or

(l2a e-ayfe+a

2 elsewhere

If conditioning occurs, fl(1) 32serts that z becomes e; f (y) asserts

that z becomes uniformly distributed over the correct region. The

learning curves for f1 (y) and f2 (y) follow: For f

(77) P(S (i-6)n-I a + [i-(i-e) k(xle) dx,

and for f2,

n-i + n-1 k(x) dx d
(78) P(Sn) (+ ("(10) f

c--a e-a

For the present, we shall derive no further statistics for these models.

Incomplete information. The experiment is organized so that a

total of A regions of fixed width 2a are presented to the subject each

time he is reinforced. One of these regions is fixed with center at

y; the others have their centers uniformly distributed on 0-2v each

trial. (Hence, there can be overlap among the reinforcers.) A list

of stimuli is assumed. The subject starts with z uniformly distributed

The FuiZ I(.) f- tho "Ira c delt function.
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nn the region 0-2 r. The conditioning assumpt"_ons are: (i) if the

subject responds in a reinforced region, cund~t oning remains unchanged;

and (it) if he does not, with probability (1-)) hs conditioning re-

Sins umc! anged, a:d with nr-jhabi iitv . it is spread olKi formi, ov'or the

rei-izor~ed reg ons. Let us start with some detin tions. The total

area expected to be covered by reinforcers on any given trial, is -y,

where

2-fA
(79) 1-\ -- (2- - 2v) A  dt

0

and henc.,

A.
(80) -y - 2 &l - (2- - 2y) .

Let s denote LOC event oi rebponda ig in a reinLorced region on trial
n

W the event of b cng wrongly conditioned on trial n C the event ofn n

beirg corre(t I, cond-tioned o;. Lr-il n (i.e., z is in the on, 'correct'

eF,.on) Ye,

(81) P (SC);, I /2a f k(xlz) dx dz = . by di.mniLOn1, qnd

(82) P (S W -(2 - 2 A "

Equation (81) in jai 4,proximaition, because there is some (small) probability

that the subject will guess outside the :or,, t region -and be rein.orced

yOe of the distractcrs. Also, ;.e a, write the tranition probabilities:

(83) P (C ICn) P(c CS)(S)P(C !C S

nIsI n i14' I n a .1 v n n

- , (1 - 8)(i - ) -. , 2 m, by derinitionvt
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and
v y 2y

P(CnvWr) =- + (I -) ) T -" n, by deIinit "on.
n. Y

The transition matiix bet-yeen states and error probability vector are,

therefore,

(84) T [ nJ

If S is the vector that r,,presents the probabilities of beir,6 in then

2 states on trial n, then S, ( 1 , !-:a The learning curve is:

(85) P(x c correct region) = S T n-1

We shall complete this discussion of deriving the expression foz

the powers of T. The eigenvalues oi Tc,n he shown to be: A, = I

and X2 ' m-n. Let Q be the matrix uf the eigenv2ctors generated from

X and X2. Then,I M- -
(86) Q n and Q- I il

n -m-4-1

It is a theorem of matrix analysis that

(87) T n _ Q Q-1 where A. - i

By multipiying and simplifyt g as much as possible, we fUrd

rn (V-r,)(m-n) n  m - (1-n)(m-n) n

n - (r-n) n 1 - m + (m-n)n J -m+l '
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II. PROBABILITY LEARNING

If an experiment is constructed so that the only reward a subject

receives is that of being correct, the reinforcements can be character-

ized by the amount of information he receives concerning the correct

response. More specificatly, if R is the set of response alternatives

and Z is the set of possible reinforcements, then Is the set of all

subsets (power set) of R. The notion here is that after responding

on a given trial the subject is shown some e. c and told that theI

correct response for tioat trial is included in e1 . In the general.

noncontingent case (i.e., the reinforcement is not contingent on the

subject's response), each ei will be shown with a probability -Ti in-

dependent of the subject's prior responses and the trial number.

We now consider the experimental paradi-m in which the number of

responses in the reinforcement set is d constant, i(l j-, where N is

the cardinalitv of R), but no one response is necessarily always pre-

sent. Thus, the paradigm is that of probability learning.

Previous theories of probability learning have dealt primarily

with the case j=l. We shall present theories for arbitrary j. The

first theory preseited is attractive since it implies a natural gen-

eralization of the well-known probability matching theorem. Unfor-

tunately, this theory is intuitively unacceptable for extreme values

of the TT's. The second theory gives the probability matching theorem

for J-l, but unless j-l, or N-i, it is mathemacticallv untractable.

These two theories ire essentially all or noue; we shall also dia-

cuss a third, linear theory.

i t'
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1. Probability Learning Without Permanent Conditioning

The assumptions of this theory are:

1. On every trial the stimulus element is conditioned to exactly

one of the N responses, or it is unconditioned. At the outset it is

unconditioned.

2. After reinforcement, the stimulus-element conditioning remains

unaltered with probability i The stimulus element becomes condi-

tioned to any one of the A members of the reinforcement set with prob-

ability 0/A.

3. If unconditioned, the subject makes each response with a guess-

ing probability of l/N; if the subject is conditioned, he makes the

response he is conditioned to.

We shall designate the set of possible responses by A - al,a

The probability of response ai on trial is denoted by pi,n' The as-

ymptotic probability of ai, i.e., lim p, is denoted By relabel-
n--

ing, any responpe can be denoted 'aI'; hence, we shall derive only p1.

As each reinforcement set has A members, there irv a total of (N N!1
A

A!(N-A)! different reinforcement sets. If these reinforcement sets a

number k - ) will contain a. We shall denote by el,e 2 ... e

those reinforcement sets that contain a1; the probabilities that these

reinforcement sets will occur are i ,12,...,7k.

Theorem 3 (probability matching). Assumptions 1 to 3 imply that

k

(89) P1 7-/A.
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Proof: Let C. be the event of being conditioned to a. on trial
J. nfI

a, and let p(C.i~ ) be the probahility of this event . By tie theorem of

total probability and by assuming that n is sufficiently large, we can

neglect the peasibiiity oi. being unconditioned. Thus,

(90 )p(C )

(9) l'',n+i 1 i,n+. l ,n) e l,n~ ~ ( 1, , n-- jn J,n

The value of p(Cin 1iCi is obtained by noting that one can be in

state C, on n+1 after being in state C1 on n if either the subject's

conditioning is unaltered (with probability 1-0) or if a 1 is in the

reinforcement set siiown, and he becomes conditioned to it (with prob-

ability 0/A tT) Thus,

(91) p(Cln11 I ) u(10) + 0/A T i.

If jil, the subject can be In state C Ion nr only if A is in the rein-

forcement set shown and he becomes conditioned to it. Thus,

(92) p(C Ic , n+ I 0 /A r

For large n, p(C i ~) -p(Ci ) p.; hence, (90) can be written

in the following way:

(93) , [( -) + O/A 77 i + ( A i )
+ kA

(94) , P I /A r p
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Since f p I,

j.1

k
(95) Op1 = O/A

which, by cancelling 9, gives the desired result:

(96) Pi /A  Q.E.D.

Some special cases of the above are: N=2 and A-I; here p, -

For N=3 and A-2, p1 W (nT1 + 172)/2; for N=6 and A-3, p1  (TTl + 72 
+

+ TTi0 )/3.

Let us look at the case N=3 and A=2 in a little more detail:

e (a a 3 e w ra a3 and e - a a Assume that r = T= 5
e 3

2' 3 2' 3 " 3 P 2 '

ind =0. Clearly, then, pl = .5 and p 2 "= P3 TM 25. Notice that

since 0, a ib awa s in the reinforcement set. Data from the

experiment reported in the Appeidi" show that when one response is al-

ways reinforced (paired-associate learnin, ,' subjects learn to select

it only. Hence the empirical value of p1 is i. It is obviou,:. then,

that the theory jist presented will break down if one or more of the

.s tends LO zero; how well it WL- do tor lloext~ieie vahoe l o1 the

-.s remjins to be .een.1

2. Probabillty Learning With Permanent ConditioniL

Assumptions I and 3 of this model are the same as for prol.ability

learning without permanent conditioning. Assumption 2 is choal ,vd to):

2' (1) if the stimulus element is conditioned to one of the

responses reinforced, it remains go conditioned; and
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(ii) if the etoulus element is not conditioned to one of the

responses reinforced, then with probability 1-0 its conditioning remains

unchanged, and with probability 5/A, it becomes conditioned to any one

of the A members of the reinforcement set.

Unfortunately, this model is less mathematically tractable than J

the preceding one and asymptotic response probabilities were obtained

only for the special cases A-l, A-N-I, and N=4 with A=2. As before,

the subject's being in state i on trial n will be denoted by Ci, n .

Let us first derive the asymptotic respcnse probabilities for A=l.

The reinforcement sets are e I  ( Iel, e2 = (a2 , etc., and appear

with probabilities TI, 1T2 9 .... T7N Thus,

(97) P(C i.) (1-,) +
i.n+1 i,n

since with probability 1-- the subject's conditioning undergoes no

change and with probability " . C he is reinforced with a i and conditions

to it. If Ji1, P(C i,n+lC J, n ) X0 Ti. By the theorem on total prob-

abil 1. ty,

(98) p ((0-0) + TT 10)p + ( y i Op J - TT1 P ) ,

But this is equivalent to:

N
(99) P , (l'I- )p1  + O i P Pj

so we obtain, for A-l, the probability matching result:

(100) Pi
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For A-N-i let us denote the reinforcement sets in the following

way: e i * (a 1: J#1}. That is, e i contains all the rasponses except

a.i Clearly there are a total of N reinforcement sets whose proba-

bilities will be given by wit 1? 29 ... 0 r At this point it may be

helpful to lock at the transition matrir from state C to the other

states. The notation C e jmeans that the subject was in state C i and

received reinforcing set e J.

C 1  C 2  C Ci C

Cile 0 0 ... 1 ... 0

Ci e2 0 0 . . . 1 .. 0

(101)

C ie i 61(N-1) 6/(N-1) . . -. /Nl

i N

Thuz. we see that p(C inr+iI Cin) is equal to (l1w) + (l-O)w. For j'~i,

P(C in+iIC) n - eI(N-l). By the theorem on total probability, we

see that:

(102) pi (lw + r1.-i~)p 1/Nl wkpk) wi~

or

(103) wIPl + w2P2 + .. + ff ipi + .. + W NPN -w Nipi.
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As this is true for all i,

(104) 
P "

Since PI + P2 + "' + Pi + + PN

(105) 1 P_ p P2  +i PN

Pi Pi Pi Pi Pi

Substituting (104) into (105) we obtain

N Yr

(106) Pi I/ --- 9k-i k

which is equivalent to

n 
1

(107) P1  ( -
I k

'he derivation of asymptotic response probabilities for N-4, A-2

is both tedious and unillu.inating; we ehall state only the results.

The six reinforcing events are labeled as follows: e- 2'

e2 - (aa 3, e 3 - (,a4), 4 = (a2,aI), -5 (a2 a 4 , and e6 - (a3 a 4.

The response probabilities are given by:

-((108) p wB r
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where

Pi F 1 1 1

(109) p - 2r 0 and B -

P3 04+r5 -2(7T2+T 3+r 6) 1+5 Ti+14

P4 0 rl+ 3  2+6 -2(1+l3+ ) r T2+r4

L 132 1 5 2

When A - N-I, if ni is equal to zero, ai will appear in every rein-

forcement set. As we have seen, the theory of probability learning with-

, peiwd.ent .. fails to predict the empirical result that in

this case p equals one. The model just described does predict that Pi-I

on the assumptions that n i-0 and for ji r 0. To see this, let us

write out (107):

(110) p l 2 . i i+l ..N
(0 P I rI2-..rN-I + + 1 I2 .** * Ii+ 1  + + In 3.. N

Now all the terms in the denominator but one contain i; therefore, they

vinish. The one that does not contain Tr must be unequal to zero since

for J i, nj > 0. But this term is the same term as the numerator so

that pi-l.

3. A Generalized Linear Model for Probability Learning

In Part II, Section 2.3, two distinct linear models for pt rtJ-

associate learning were developed. We will apply the model exemplifled

in the matrix L(l) of Equation (59) of the preceding section. The basic

(1)
assumption behind matrix L is that the decrement in response prol;a-

bility of a response not reinforced on a trial was ti be spread tniforIv

only among reinforced responses. As noted previouslv, with >; response



-153-

alternatives, A of which are reinforced on any trial, there are (A) J
A

different reinforcement sets, k of which contain a1, where k-
P !( A-1 "

Let us label the reinforcement sets in such a way that the firt3 k con-

tain aI then determine pl. the asymptotic response probability lor a

The probabilities of the J reinforcement sets are given by n1I, r12 .... T11.

The Leursiun iJr plln+l i :

1 l,n+l ())Pi,n i + [Pl,n -A, 1"

The first term on the right-hand side represents p l,n+l given that a1

was not reinforced on trial P. tines the probability that it was riot

reinforced; the second term is analogous except'that it assumes a1 was

reinforced on n. The part in brackets in the second term of the right-

hand side foLcws from (64).

We now define two terms:

N N-A n ,

(112) r N-A and HI

from which it follows that (I - .) Here nl is the protabilitv

that at not 'e included in the reinforcement set and 1-fl ,s the prob-

ability tnat it is included, We can n-w rewritv (111) a

(113) (' P + + r(1-p ). (-;T)
r,n+ + ,n ,n

- - p D + -p -In1ppl ,n - l ,n ,n)".
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Tn the limit, p'1 = P11-l'P~ ; hence,

(114) anp 1,n ai r(1-7l)(Il-PId

From this it follows that:

r(l - R1)

(115) P- R + r(1-l)

As a special case of the above, if A-1, then r-l dnd p I - 71

giving probability matching.

This completes our discussion of probability learning with finite

response sets. We have developed only a sample of the theories possible

to obtain in analogy to the theories of paired-assncidte learning. It

would seem profitable to olitain sonie ddta before cot .ti the theoret-

ical development to, a~r bu , -), 1dr ibwe knlow, the .)niv relevant data

for A ~t2 are from unpublished work of Michael Humphreys and David RImelhart.

4. Frobability L-earning With a Continuum of Responsos

The experimenL di scussed in Part 11, S-ction 4 for a response con-

-' i a i' 'Rn n wi t:1 a :1111 1n1LU!! Of r-

,pon-.e id -riniorkecment PO''.iilliC,- The next p~irazdig;?4,r ~ e mi.

h4b.1 Ont fnumo re NLn.es Lu i re tt re in tor~eirben:

Probability learning, '.4th c~ft-Lri!t reinforcement. Considler a

task in which the subject is placed before a straight bar (perhaps 2

feet long) with a light bulb at eizher end. The Suibject iq told that

when he indica~es a Point on the bar at the be~innzn of each trial

o-.ne of the lights will flash. His task is' to minimize the avera;ge dir.-

tarnce between the point he selects and Owi~ light flash on that lria .

Clearly, thi- is a task with a continuum of iesponse oitern,!ives; it

rdiffers frx, the probability learrin,,: L,: it tie d.;ie 1~

L4
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there are only two reinforcing events. We shall call this task prob-

ability learning with left-right reinforcement. Reinforcement is deter-

minate since, after one light flashes, the subject knows he should have

selected that extreme end of the bar.

We first show that if the bubject believes the probability of the

left l1i,,ht flashing, P(L), differs irom .5, he .hotild choose one ex-

treme or the uther. Number the leftmost point the subject can select

0 and the rightmost point 1. Let r denote the subject's choice on

trial n. Let k equal his loss. If the left light flashes k - r , and
n

if the right light flashes k = l-r . His expected loss is given by:
n

(116) E(k) - P(L)r n + l - P(L] (1-r ).

Differentiating with respect to r we obtain,

(117) dE(k) = 2 P(L) - 1.
dr

Assume tiat P(L) > .5; then 1.he derivative of the subject's expected

loss is strictly positive, that i., E(k) is an increasing function of

r so E(k) is minimized by choosing r 0 U. Exactly similar argument.n n

hold it p(L) - .5.

The strategy just analyzed is an optimal strategy. Our belief,

however, is that the subject's behavior will be analogous to the prob-

ability-matching behavior exhibited in finite probability learning

situations. That is, we expect that r will approach I-nL where "rL is

the noncontingent probability that the leot i a,, will flash.

A simple linear model gives this result. Let rn+1 be given in terms

of r
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(118) r+ 1 W (Orn + 1-0) if right light flashes

Or if left 'lght flashesn

It is then easy to show that

(119) lim r - l-r.

The linear model predicts, uZ course, considerable variation in rn

even after its expected value reaches asymptote.

Let us now turn to a otimulus-sampling model that qlso gives prob-

ability matching, but that predicts decreasing motion around 1-7. as

n increases. in the stimul'is-sampling model, the subject is conditioned

to one response on any given trial. He chooses his response, however,

from some distribution "smeared'" about the response he is ccnditioned

to. In most stimulus-sampling models this smearing distribution,

1 (rjp) where p is a vector representing the parameters of the distribu-

tion, maintains a constant shape in the course of learning;, In thir

model the shape of the distribution changes as doeE the response it is

smeared around. Specifically, the model assumes that k is a beta dis-

iribution with p,-ai-ters 0 and - . The expected value of r is, then,
n n n

rk(rI ,or )dr. Since k is a beta, this becomes

10) 
n

(120) E(rn) = a +
n n

The model firther assumes that a, = - c where c i; j parameter fo

be estimated The conditioning rule is:

c it the right light flashes
(121) 2n+l

it the Ieft Ii ght flashes

nI
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(122) if the right light flashes

ni C 2 if tne left light flashes

n 2

wiere cl is tli, s':cond paraTce:er ,I the t h eor

For n large,

(123) - im E(r C 4 -2
I 2 L. 22

which corresponds to probability rmtching. Assuming that the prob-

ability matching prediction is borne out, this model can be compared

with the linear model on the basis of resoonse variance for n large.

Modification of subjective probabilities. In estimating a prob-

ability a subject may be said to be responding from a continuum of

alternatives. If he is then reinforced with new information relevant

to the probability in qj;estion, the 'normative' prediction is that he

will modify his probabliity estimate in accord with Bayes' theorem.

It is our purpose in this subsection to look at one type of probability

modification behavior from an explicitly learning-theoretic point of

view.

Let the subject have some simple means of responding on the in-

terval [0,1]. Denote his response on trial n by pn. The experimenter

places before the subject a jar containing a large number of marbles,

say 1000. He tells the subject that there are 100 marbles in the jai

and that the only colors the marbles may be are chartruese (C) and

heliotrope (H). The subject is told that there may be from 0 to 1000

of each color of marble. Under these circumstances Jamison and Kozielecki

Ii
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(37] showed that subjects tend to ha'-e a uniform density for p(C) where

p(C) represents the subject's estimate of the fraction of chartreuse

• ar!'les. ilence, it is :ianlral to expect that PI will eqliai .', T:. t I,

experimental sequence, the subject responds with p ; the experimentern

fishes a marble from the jar, shows it to the subject, and replaces it;

the subject responds with pn+l" The similarity between this model and

the left-right probability learning model mentioned previously is clear.

Let us use the stimulus-sampling model developed for that situation

(123)-(131). From Jamison and Kozielecki's observations it ts natural

to assume that the parameter cI ol thdL model he equal to one. Results

of data pres.nted in Pe -son and Phillips [51] indicate that c2

should be near one and observations by Phillips, haYs, and FLIwa,'d. [52]

indicate that c2 should be less than oi~e. At any rate, after seeing

n C chartruese and ,.H heLitrope marbles, the density for p is:

i pnc c2 (l-p)nHc2

(124) r(pn) - 1(ncC2+l' (n.P2 lcn 6(n c +l, nHc 2 +1)

where n nC + n H and $(.,,) denotes the beta functien of those argu-

ments. The expectation of this density is:

n c 2"
(125) E(pn) -,C22c

Asymptotically, this model implies that the subject will arrive

at the correct probabilitv. It c, 1 1, the stihect's behavi,)r is nor-

mdtive throughout. Thus our learning model, if it gives ,n itdequ.iLte

Part Four/One of this dissertation.
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iccount oi this type of data, yields the same results as a Bayesian

model. (In a sense, c 2 generalizes the normative model. See Suppes

[65) ft. - an account of the one-element model viewed as a generalization

oi Bay;iar updating.) What are the implications of this?

If we assume that the stimulus-sampling model is also adequate

ior the left-right probability learning situation, we have a single

learning-theoretic model that accounts for behavior that in one case

is normative and in the other case is not. Bayesian or degraded

Bayesian models are adequate in some cases, because they approach the

learning-theoretic models. The implication here is that our notion

uf optimality L, very limited.

Multioint reinforcement. We now consider a probability learning

paradigm with a continuum of responses analogous to that with a

finite response set, but A (the number of responses in a reinforcement)

is greater than 1. There are A points on the circumference of the

circle reinforced after the subject has set his pointer. With prob-

ability 1-0 the mode, z, of his smearing distribution (defined prior to

equation ,') is assumed to remain unchanged. With Prls"l,4lity 0/A, z

moves to any one of the points reinforced. Thus the recursion on the

density for z is given by:

(126) gn (z) = (l-O)g (z) + O/A t (z) + 9/A t,,(7) + ... + e/A I (z),

n1
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where fl(z) gives the density from which the ith reinforcement was

drawn. For large n, gn(z) gn(z). Hence,

(127) g0,(z) g,,(z)(1-) + 8/A I[(z) + f2(z) + + fA(Z)J

= ! i =f.(z)

In Suppes 11959], Lhe asymptoLic respone density, r (x), is derived

from the above and shown to be:

2- A
(128) r (x) k(x~z) f.(z) dz.

The in-resting prediction of this theory is that the sane r (x)

is obtainable for multiple reinforcement as for single reinforcement,

if the density for the single reinforcement i the average of the

densities for multiple reinforcement.

Let us consider one oLder probability learning task. The subject

is reinforced on each trial with a region of length 2Y centered at y

where y is a random variable with density f(y). The simplest assumption

is that if the subject becomes conditioned, he conditions to point y.

If this is so, cleaily, r,(x) must he given by:

(129) r.(x) k(xlz)i(z)dz.
$0



This is somewhat counter intuitive since it is independent of or. Per-

haps a more re.sonable conditioning assumption would be that z is dis-

tributed uniformly over the reinforced region if condititciing occurs.

Let ui define U(zty,ca) to equal 1/2, for y - z '- :and 0 else-

where. The density for z on trial n+l, given that conditioning occurred,

is denoted U,2(z); it is given by:

(130) U)(z) -t u(zly, a) f(y) dy.

The recursion for g n(z) is, then,

(131) g91 (Z) -(1-9)g (Z) + e ()

and the asymptotic response density is:

(132) r.(x) k(x I z) 1.1(z)dz

We shall derive no further StaLiStics fOr. these models at this tinbe.
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III. CONCLUDING COmMENTS: MORE GENERAL INFORMATION STRUCTURES

In the experimental paradigms discussed thus far the set E

of possible reinforcements can be divided into two subsets for each

stimulus-response pair. One subset contains reinforcements that indi-

cate the subject's response to the stimulus was 'correct'; the other

,containm reinforcements that indicate his response was 'incorrect'.

By his design of the experiment, thE experimenter chose a probability

distribution fo- each S-R pair over the set of possible reinforcements;

this distribution generates a distribution on the subsets 'correct'

and 'incorrect'. If the subject can choose a response to each stimulus

so that he is certain to receive a 'correct' reinforcement, we have

the case defined previously in this paper as paired-associate learning.

If the distribution on E depends only on the stimulus and not on trial

number or the subject's response, the reinforcement is noncontingent.

If the distribution on E is noncontingent, and there is no response

that will insure the subject he is correct, we have probability learn-

Our purpo., in this concludini; section is to consider briefly the

case where the set E has more than two subs,'ts that are equivalence

classes with respect to their value to the subject, To give a more

concrete idea of what we have in mind, %.e will first discuss the ex-

periment !y Keller, Cole, Burke, and Estvs [40] that Illustrates the

notion of information via differential reward.

The subjects were fAced witn a paired-associate list of 25 items.

There were two response alternatives and 5 possible reinforcements--

the numbers 1, 2, 4, 6, and 8. One of these numbers was assigned to
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each S-R pair as its point value. The subject was told that his pay

at the end of the session depended on the number of points h. accu-

mulated. So, for example, if the reward for pushing the left button,

if XAQ were the stimulus, was 4, and the reward for pushing the right

button was I, the subject should learn to push only the left button.

The experiment was run under two differo'nt zonditions. In one the

subject was told at the end of each trial the reward value for both

of the possible responses; in the other he was told only the reward

value for the response he had selected. In the latter case, since

there were more than two possible reward values, knowing the value of

one response gave only partial information concerning tile optimal re-

sponse. This is an example of information via differential reward.

Let us consider now information via differential reward in the

context of alternative types of information a subject might receive.

A learning experiment may include: (i) a set S of stimuli, (ii) a set

R of response alternatives, (iii) a set E of reinforcements, (iv) a

partition P of E into sets of reinforcements equivalent in value to

the subject, and (v) an experimenter-determined function f ir,.i SxR

into P , where P is the probability simplex in e diiensi., ed spacee e

and e is the cardinality of E. The probability that each reinforce-

ment occurs is given by f as a function of the stimulus presented and

the response selected. If e' is the number of members in P, f deter-

mines a function f' tr,,. SxR .nL P ,, and f', then, gives the prob-

ability of each outcome value as a function of the stimulus and re-

sponse chosen. The subject's task in a learning experiment is to learn

as umich as is Uece±s'ry abo,,t f' so that he may make the optimal re-

sponse to each stimulus.
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The subject learns about f' from information provided him by the

experimenter. We may classify thi& information into three broad types.

First, exogenous information is provided beforL the experiment begins.

The subject learns what the responses are, what the stimuli are, whether

reinforcement is contingent, possible reward values, number of trials,

etc. Parts of this exogenous information might, of course, be delib-

erate misinformation.

The second type consists of information concerning f' for a fixed

stimulus. In a typical paired-associate experiment the subject re-

ceives complete information concerning f' on each trial for each stim-

ulus. In the paradigms considered in Part II, subjects are given

partial information by having E be the set of subsets uL R (perhaps

of fixed cardinality). The subject is told on each trial that the

correct response was among those shown. Another type of information

concerning the optimal response to a given stinillis is information via

differential reward. Here the subject learns the rewards accruing to

the members of the reinforcement set. The forms of information of

this type d , then, on the structure of the reinforcement set.

The third consists of information concerning f' for a fixed re-

sponse. That is, does knowledge that response i is optimal for stim-

ulus j give any information relevant to the optimal responses for other

stimuli? This third type of information is obtainod b,. 'conropt for-

mation', ' timulu. generalization', 'pattern recognition', 'recognition

of universals', etc.; the tLrm chosen depends on whether you are

pych)10iLt engineer, or philosopher.
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Notice the symmetry between the second and third types of informa-

tion a subject can be given. For a particular stimulus, the subject

may receive knowledge relevant to the optimal response that concerns

structure of the response set. For a particular response, the subject

may receive information about the stimuli for which that response is

optimal by placing structure on the stimulus set. The role of informa-

tion via differential reward in this context is one way of placing

structure on the reinforcement set; earlier sections of this disser-

tation considered other ways in detail.

For concept formation, there must be some sort of structure on

the stimulus set. Roberts and Suppes [53] and Jamison (35] ad-

vanced quite different models for concept learning in which the basic

structure on the stimulus set is of a particularly simple form, but

they jointly assume that each stimulus is capable of being completely

described by specifying for each of several attributeb (e.g., color,

size, ...) the value the stimulus takes on that attribute. We con-

sider it an important theoretical task in learning theory to describe

in detail other forms of structure that can be put on sets of stimuli.

The results in this paper should be considered as simply a pro-

legomenon to detailed analysis of information structures in learning

theory. Our results have been limited to rather specfal types of In-

formation scructures placed on reinforcement sets. More general struc-

tures need to be considered and, more important, information structures

on stimulus sets--concept learning--must be brought within the scope

of the analysis.

Part Three/One of this dissertation.
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Section Four

EMPIRICAL STUDIES

In this final section i report on several empirical studies of

individual choice behavLor. Simon [15, p. 2] has observed that this

is an area of study that has little interested economists: "Economists

have been relatively uninterested in descriptive microeconomics--unier-

standing the behavior of individual economic agents--except as this has

been necessary to provide a foundation for macroeconomics. The ncrma-

tive economist 'obviously' doesn't need a theory of human behavior:

he wants to know how people ought to behave, not how they do behave".

While Simon's comment does seem generally valid, empirically oriented

papers concerning individual choice behavior do occasionally appear in

the economics literature. Some of these studies--for example the duo-

poly studies of Suppes and Carlsmith [16] and Friedman [5]--are attempts

to represent organizational behavior by that of individuals. The rest

of these studies are genuine attempts to study individual choice be-

havior, though admittedly under somewhat contrived circumstances. It

is this last type of study that I shall report on here; the next three

parts of this dissertation are empirical studies related to the theo-

retical developments of Section Three.

Part Four/One renorts on an attempt to empirical lv measure the

structure of subjects' beliefs under conditions of total uncerltirty--

where they have no information concernin , the relevant orobabilit Ls

This work was (lone in co! Hahoration with Dr. Joxef Koo ilecki ()f the

Lti ,'C' it': )f Warsaw ;ind hi1s he ol pi-r vio(lsIv publishd--,t i isol z1 iat

! I
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Part Four/Two is concerned with Individual learning or adaptive

behavior when his teinforcements carry only partin' fforn, t- ii ,

cerning the optimal policy. This work is closely related to the thE,-

retical developments of Part Three/Two and was done in collaboration

with Mr. Richard Freund, Prof. Patrick Suppes, and, primarily, Miss

Deborah Lhamon. It will be published as a part of Jamison, Lhamon,

and Suppes [8].

Part Four/Tlhree reports on an unpublished study of individual in-

formation seeking behavior done in collaboration with Miss Amy Hersh.

The results are quite erratic. While this may be an artifact of our

particular experimental design, I am inclined to think otherwise. In-

formal experimentation earlier by Mr. Michael Humphreys and me using a

computer control of subject stimulus resulted in similar erratic be-

havior.

!*
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Part Four/One

SUBJECTIVE PROBABILITIES UNDER TOTAL UNCERTAINTY

I. INTRODUCTION

Humans must frequently choose among several courses of action under

circumstances such that the outcome of their choice depends on an un-

known "state of nature". Let us denote the set of possible states of

nature by Q and consider Q to have m members that are riutually

exclusive and collectively exhaustive--wl, u2 5 ... ' Wm" The vector

S(Ci' %2' .' I m) is a probability distribution over Q if and

only if m =1>
l if 1 and 0 for i = 1, ... , m. Fi corresponds

to the probability that w i will occur.

Edwards [3], Luce and Suppes [11], and others, dichotomize exper-

imental situation5 involving choice behavior in the following way. If

the decision-maker's choice determines the outccme with probability 1

(i.e., one of the i's is equal to 1), then the experimental situa-

tion is one with certain outcomes; otherwise, the outcome is uncertain.

If the subject knows the probability distribution over the outcomes,

i.e., if he knows , his choice is risky; if he only has "partial

knowledge" or "no knowledge" of his choice is partially or totally

uncertain. We shall use "total uncertainty" in this last way; our

purpose is to examine the structure of a subject's beliefs when he has

no knowledge of ., that is, when the S is totally uncertain.

Jamison [6] has proposed a definition of total uncertainty that is al

extension of the Laplacian principle of insufficient reason. This
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definition and 3ome of its implications will be described briefly here

as theoretical background for our experimental results.

Consider the set of all possible probability distributions over

Q2, that is, the set of all vectors F. Let us denote This set by

and describe the decision-maker's knowledge of F by a density

f( 1 , F,2, "'" , Fm) = f ( ) defined on If f( ) is an impulse

(6 function) at = (1, 0, ... , 0) or = (0, 1, 0, ... , 0), or

. , = (0, 0, ... , 1), then decision-making is under certainty. If

f(r) is an Impulse elsewhere in , the decision-making is risky. If

f(r,) is a constant, the decision-maker is, by definition, totally un-

certain of . The intuitive motivation for this definition is that

if f() is a constant, no probability distributions over k2 are more

likely than any others. Partial uncertainty oc. irs when f(F,) is

neither an impulse nor a constant.

If K is the constant value of f() under total uncertainty,

then:

ff...fKdr" dF dr I'-l "d . 1.

Evaluating this definite integral enables us to find K, which turns

out to be (m - 1): ! '% /.. The probability that is greater than

some specific value, ;av C, is givern by:

prob(, 0 f = , M Kd, m_,.....dF.
I J '..fr- m-3- I

(I (-I. (2)

Luce and Raiffa [lOJ review normative theoiles of decision-making
under total uncertainty. Extensions of th2sc othcr Lheolies may be found

in Atkinson, Church, & Harris (1]. Savage [131 presents a number of ob-
jections to the probability of probabilities approach used here. These
alternatives and objections are discussed in Jamison [61.

IJ
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One minus prob( 1 > C) is simply the probability that < C or the

marginal cumulative for EI. which we shall denote by F (C). By

symmetry F (C) = F (C) ... F (C) = ... F (C); thus we have:
1 2 1 m

M1
S (C) =1 -( C) (3)
i

Fig. 1 shows F.(C) for several values of m.

-

Insert Fig. 1 about here

V The derivative of the marginal cumulative is the marginal density,

which we shall denote fi(C):

dF.(C) 2

df (C) I = (M 1)(- C)m . (4);! ii dc

Fig. 2 shows f.(C) for several values of m.
1

Insert Fig. 2 about here

The purpose of our experiment was to determine if the normative

model just described for belief under total uncertainty approximates

the actual structure of Ss beliefs. To achieve this purpose we

placed Ss in a situation of total uncertainty and then empirically

determined the cumulative F.(C) for a number of values of m.1
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II. METHOD

Subjects

The Ss were 30 students from Stanford University fulfilling

course requirements for introductory psychology. Each participated in

one experimental session of approximately 30 minutes duration. Ss

were run individually.

Experimental design and procedure

At the onset of the experiment the Ss were told that the ex-

perimenter wished to examine his beliefs concerning the outcome of a

hypothetical scientific experiment about which the Ss would be given

very little- information. A particle measuring device would be placed

into an environment in which there were m distinct types of particles.

The Ss were told that the particle measuring device counted the num-

ber of each type of particle striking it in any given time interval

and that it was left in the environment until a total of 1000 particles

of the m types hiad been detected. A copy of the instructions is in-

cluded as an Appendix to Part Four/One.

The experiment consisted of three series run with 10 subjects

each; in Series I m = 2, in Series II m = 4 and in Series III

m = 8. For m 2, the particles were named t, and E: for m = 4

they were named w, c, 5, and ; and for m = 8 they were named w,

c, 6, , c, , x, and e. The experimenter asked the Ss a list of

questions of the following form: "What do you think the prnbability

is that the particle measure device counted less than 500 c-particles

among the 1000 total"? The Ss were asked to write their responses



M-27

E~g~r E.:ma. z~uis~'.' und~er tctal uncertainty.
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as a two-digit decimal on a 3" x 5" card, then t,, tuiri the card over.

Each S was given all the time he wished to answer. With m = 2 and

m = 4, Ss were asked for each particle what he thought the probabilitv

was that less than 25, 100, 200, 350, 500, 650, 800, 900, a'd 075 of

that type of particle would be among the 1000 counted. The questior

order was random. For m = 8 the 350, 650, and q72 questions ,,'ere

deleted. After the experiment Ss werE is,"ed que-tions concerning

their method of answering.

Ill. RESULTS

,'he results were a number of discrete values of F. (C) for each

particle and for each subi- For each paiticl- we pooled the results

of the 10 subjects who were tested for each value of m. We then did

a standard analysis of variance test to ascertain whether any sicnifi-

cant differences existed in Ss' r.-sponses for the different particles.

As Table 1 shows, there were no s4 gnificant difFerences among particles

at the .05 level.

Table 1 - Analysis of Variance on Differences Among Particles

Series df F Signif tcance Level

m = 2 1/162 10 p 05

m = 4 3/324 ,'5 p .0'

m = 8 7/432 1.03 p , .05

What 'Fable 1 indicates Is that S; a ccerted Laplace's prInt )

ot Insufficient rason; they showed no prefereuc,? for any part icular

particles. The Ss' answers t quest ions after experimentat in



(alrnied th is resulI L .Sin ce ,s 7ccepte i the Principle of insof fl-

cient re-!son , resul ts -w-ere also pooled across pa, t icles. Figs. 3a, 3b,

and c Tow ne oriatis cmultivs F(C) as well as our data points

pooled acros.s Ss and particles for each of the three different values

ofm. Th-e -,ed-*in responses shown in the '_gures correspond closely

tc, the aai~

l-.swrt Figs. -)a. 3b, and 3c about here

Fig. 3 a irly indic.ates that for P, 2 the normative model fits

Ct, dita ver.' el whereas for mn = 4 and m, = 8 there is some re-

laition Uciween the - -riative model and the data but not a fit.

T~h.- varl .ance analysis of the data chat is displayed in Table 2

indicates that wE-n Inm 2 there is no significant difference between

the norniat'ive cuwrve :in-'C ta data at the .05 le-Ai. For mn = and

mn S the diff.-rence bc w,.en the normiative curve and the data is

S IFnif iCant itt the .001 evel.

Table 2 - Analvsis oi Variance on Differences

between Normative Models and Data

Serles if F Significance Level

in 1/'.1,36 P > .05

in=4 100.33 <.001

8 /lS229.312 p< .001

Since the normative curves fit the data so poorly when ir.

tini in 8, we decid(ed to use a one-parameter curve of the same form
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as the normative model and fit it to the data by least squares tech-

niques. That is, we wished to describe the data by a curve of the

following nature:

* cm*-lo
Fi (C) - - (I -C) (5)

The * superscript indicates that (C) and m* are descriptive

rather than normative. The least squares estimate of m* is that

value of m* which minimizes the A given in equation (6).

9

S1 [I - (l - -)m P,obs (6)

where C1 = 25/100, C2  100/1000, etc., and Pb is the mean

probability estimate of the Ss. Table 3 shows the least squares

estimates of m* computed numerically on Stanford's IBM 7090.

Table 3 - Least Squares Estimates of m*

Series m*

m - 2 1.98 .00

m - 4 2.63 .04

m - 8 4.05 3.07

Figs. 2b and 2c show Fi (C) based on the 7alues of m* given

in Table 3.

Our data indicate that Ss' beliefs are quite close to the rnorr,-

ative model for m - 2, scarcely a surprising result. For m > 2

Ss' beliefs shift towara the normative model, but not sufficiently far.

The reason for this is suggested in Figs. 4a, 4b, and 4c where f i(C)
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and fi (C) are plotted. (f (C) is the descriptive density based

on the value of m* given in Table 3 inserted intc equation (4).)

Insert Figures 4a, 4b, and 4c about here

Fig. 4 shows that Ss underestimate probability density when the

density is relatively high and overestimate the density when the

density is relatively low. Mhen the density is cc-stant (m 2),

they neither underestimate nor overestimate it. This is a general-

ization to situations involving total uncertainty oF the well-known

work of Preston and Baratta [1948] and others who have shown :hat Ss

tend to underestimate high probabilities and overestimate low ones.

IV. DISCUSSION

Our findings corroborate the results of Cohen and Hansel [2] that

Ss tend to apply the principle of insufficient reason if they are

given no information. In addition, the phenomenon of underes-imating

high probabilities and overestimating low is shown to have a direct

analog in situations involving probability densities. Here Ss und

estimate regions of high density and overestimate regions of low

density.

Our results have an important bearing on the question of the con-

sistency of Ss' beliefs. An individual's beliefs (subjective proh -

ability estimates) are said to be incoherent if an alert bookmaker cai,

arrange a set of bets based on the person's prohablitfes such that
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the person can win in no eventuality. When the probabilities are well

known (i.e., when f(c) is an impulse at some particular F) a

necessary and sufficient condition for coherence is that the sum of

the prooabilities of mutually exclusive and collectively exhaustive

events be unity (see Shimony [14]). Analogously, a necessary (but

not sufficent) condition for coherence when probabilities are not well

known is that the sum of the expectations of the probabilities be

unity. That is, the R defined below must equal one.

m 

I

R = f C fi(C)dC. (7)

Since all the f is are equal (from the insignificance of the differ-

ences among particles),

oI cmk-2dC fi 8

R =mf C(m* - 1)(i - C) d (

Thus R = 1 only when m* m. It is clear from Table 3 that when

m = 4 and m = 8, the Ss in our experiment had beliefs that were

strongly incoherent.

Our study is an examination of the static structure of a person's

beliefs when he is in a situatic- of total uncertainty. The natural

extension of this work is to examine the kinematics of belief change

when the S is given information relevant to the situation. Work on

the kinematics of belief change when probabilities are well know is

reported in a number of papers in a volume ediited by Edwards [4].
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Appendix to Part Four/One

Instruction to Subjects

The instru' tioi, that were read to the Ss when m 8 are given

below. The instructions for m =2 and m = 4 are the same except

for obvious modifications.

We are running an experiment to examine the nature of a person's

intuitic s concerning situations where lie has little or no concrete

evidence tc guide him. You will be asked to estimate thc& likelihood

of certa-I,, propositions concerning a hypothetical scientific experiment.

While there are no absolutely "right" or "wrong"' answer.;, some answers

are better than others Your response will be evaluated against a

hypothetical ideal subject.

k.et me now d'-scribe the hypothetical scientific situation about

which we wish to examine your beliefs. A particle measuring device

is placed into an environment where there are 8 distinct types ot

particles which we shall designate by letters of the Greek alphabet--

w, , ~ , ,, ,, , 0. What the particle moasurin- device does is

counit the number of each type of particle tiiat hits it in a given time

In 0.rv 11. W1, leave Cie (Junter in the environment until it hiis been

struck'N by fotaL of 1"10O particles of the B types. Do you remember

what the tyreEs were? Ptior to th- experlwrent you are assumed to have

a!-;olutely no k(nowledge about the relative numbers of the 8 types oi

particles except that some of each may exist and that no other type
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of particle is in the environment. Given this scant information, a d

nothing else, we want to examine your intuitions concerning how many

of each type of particle will be included In the 1000 measured by the

detector.

The questions we ask you concerning your beliefs will be of the

following form: What do you think the prcbability is that there are

less than some specific number of, say, E-particles among the I000

,ounted? This statement would be true. of course, if there were 0,

1, 2, 3, ... , or any number up tc th t number of c--particles among

those counted but it would not be t.i 2 if there were more thai' that

many c-particles. What you are being sked is how likely is it that

there are less than that number of c-particles? If you believed that

there were certainly less than that number of E-particles, you woulc

tell us that the probability of there being less than that number is

If, on the other hand, you believed that there were certair,v

more than that number of c-particles, you would tell us that the

probability that there is less than that number is ..... If you

believe that it is equally likely that there are more than that nunuoer

as less, you would say the probability is .5. You can give us any

probability between zero and one.

Perhaps a more concrete example vill help makc things clear.

Consider an ordinary die iuch as this one. What do v u think the

probability is that if T roll this die a number less thAn 2 will be on

the upturned face? What do you tb4nk the probability is F less than

5? Clearly, the probability of less than 2 must be smaller than the

probability of less than 5. Well, you see, this Is cx-ctly the same
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type of question that we shall be asking concerning particles counted

by our cou..ter. The only difference is that with a die you already

have a goGd idea of the probability asked for, whereas in this experi-

ment we are asking for youL ,Lcuitions concerning unknown probabilities.

Let me now ask you a few sample questions before we begin. First,

what do you think the probability is that there are less than 1001

4-particles among those counted? [Explain if answer is wrong.] What

do you thin' the probability is that there are less than 950 w-particles

among the 1000 counted? Less than 75 ? Remembering, again, that

there are 8 types of particles, what do you think the probability is

of less than 500 E-particles? Less than 950 8? [No feedback is given

last 4 questions.)

In front of you is a stack of 3" x 5" cards that you will write

your -eplies on. )uld you write your replies as a two-digit decimal

... lik so.

Before we begin, please feel free to ask any questions you might

have.

I
I,
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Part Four/Two

AN EXIPERIMENT ON; PAL WITH INCOMPLETE INFORMATION

I. INTRODUCTION

In Part Three/Two several models were discussed for the experi-

mental paradiigm of PAL with noncontingent, incomplete-informiation re-

inforcement. in the summer of 1967 such an ev:,keriment was performled

at Stanford Un~iversity w'ith several different pairings of N and A, the

response- and reinforo-erent-set cardinalities. This summarizes the

results of that experiment.

II. MIEThOD)

Ten subjects from the und-rgraduate and recent graduate ommit

at Stanford part icipated in the experiment for routily all hour a Illy

for 10 days with in a period (-f two weeks. Ani on-I nie PD11- computer

control Led alL di splays ard datai recordi ng. The experimeiLu , t iilrielt

a caJ-hode -ray n~bV (CRT) With An electric tvpewri ror keyboard lf

di recLI V be low itwas housed inl . sound-proof booth. The s t i!Iu i i

ally problem wez e the first N fi gures represented hN, hc i Lst N kev 0i

the di git, or lop letter , 1; tie on *,the keVird bus j~l' tihey' Were e itr

0, 1.....r ~.w,. Th (N:A) pic suedOn thr ft r.,t ." Jdiv-

were (2:1)., (tb:1) , (10):1),. (10: 0), (b: 0,(0 ) :Y ad(~A

onl days ~ o10 the, pat rings WE-re (I0:13) , (~ 1:),(0 t:

and ( 10: 9) .Hal1t the Sub OUCt S rece-ived the lod tjes tr e

cvc les per day in the -rdvr giv en. The re.a ining hial I CCc i'ved a
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randoymized order of condit ions for cach of the three cyc les. for thle

day. As shown later, thle set order of conditions started with the

easiest condition and ended with the hardest, as determined by thle nlor-

,native expected number Of Lotal eros tayoetm uject wor-

ked onl , srciution to two problems, one with the displays on the top

half of the CRT, thle othe: with the displays on the bottor .ialf. For

half the Subjects thle top pr-oblem involved only thle digits and thle bot-

tom problem only the letters. For the other subjects thle top problem

was letters and the bottom problcem Was digits. Trials on the two pro-

blems alternated. Both problems were on the sai: (N:A) condition, and

both had to be solved I-) I criterion c f 4 successive tr ialis on thle so-me

problemi, not success iv, t r ials £~ the actual experiment.

on ench trial thle sub-4 j saw the display "K s pond From:" foillowed

by the N p.oss'ile rt sponse-i. Hte pressed o keycorepodn to the one

he LhOIuc"t C0o, rect , 31, il;r.pnewas Jipli ,n the CRT below

tite !:(spouse 8 t . Tht t t cdlack set f A res ;ponseI vs I n I k. t hs sin-

g1It' corrteCt Se Ipnt tl v~ cas2is d k, low tilh sub c rc'spoulst

ilt i Ierval J! d E in !IF, _ h a te h~ k > t was 1 IV(-, I c he sl ;iv

laItc. Fki l ow in III cle t Jsayot IO tced.1hk set theI s4ub iui

hadJ up~ 25 - _") .i sty the. -. " St S t 20! i 001 r' f-:It

key to concluide lhat tt rllInJ tc cal rt xt e 1p v v I,.t Ii I

reCSponlst, I aIrvncv , ISi.- :, 'ohc Teot I vt e ;

airt niot inclIudckd ,n thu rcst. 1t:;, .1:l1 iui heE1v ~ .

com it i e~ aj edto t e h Ct S, hLev Wure WV Ipr1, tct th

procedurf. loe tK 'e lt, e.\pc eetbj
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The data from all experimcntal groups for days 3 through 10 are

cons'dered as a wholp since none of the manipulations other than the

(N.A) pairings showed consi -nt differences. Table 3 I;hows the mean

total errors for each condition. The normative expec ed total errors,

determined by analytic mothods of a derivation, or, in the more icif-

ficult cases. zowputer-run Monte Carlos, are also shown.

TABLE 3

Predicted and Observed Total Errors

Observed mean Normative expected

N:A total errors total errors

2:1 0.51 0.50

6:- 0.78 0.83

10:1 0.94 0.90
10:3 1.91 1.84
6:3 2.26 2.13

10:5 2.35 2.95
10:7 6.56 5.39

6:5 7.58 7.25
10:9 18.50 17.35

The conditions with A = I were essentially cases of one-trial learning.

Errors of chance happened on the first trial, and or Qcceeding trials

the error frequency was less than .015. Thus the subjects performed

essentially normatively on these 2-item list straightforward PAL tasks.

The learning curves for the remaining six conditions with A > I are

plotted in Figures 6 through 1.1, alor.g with the normative learning

curves. The normative error probabilities were not determined beyond

the twentieth trial. The normative and observed learning t-urves are
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veCry cI o ' v2 some interest i s thli cross o I orma ti ye -ond observe'

curves ijO the (6-5~) con lit -, (Figurc 10). Tiiz bet ter thain fo rm~at lye

performance is most l ikelJy due to fie ab)il t \ o f so ib je c ts to use 1 t lhe

4-correct -response criterion to solve One pl Oblem-l on- e the othle r hid

been solved. This criterion use was not built into the normanti ye model1.

Thle study larencies are plotted in Figures 12-13. We do nu' know'

how to discuss these latencirs meaniingfully in a quantitative manner,

bu~t present them to call attent ioui to a qiua] itatIvye peculiarity. Ttn

tihe (10:9) and (6:5) conditions (Figure 13) a -,irked rise follow-d by

a de~line occurred in the qtudy latency for several trials. In these

coriditions- whent the feedback set was close to thle response set inl size,

aab~L~sfceoucot iv said thait they watcdhed for thle nonre i P.forced respon-

"'sliTe criang es observed in tile study .eilc jscnI e tro

a practice, withi thle rise, due to thle increasing number of response!;

knil -n to lhe incorrect, tol lo-ed liv tile swi tcliover , andi thlen the tiecline

iii 1ltency withi thli decreasi rig number of r' spouses conisidlered poss iblly

correct. rIt Sho I ( b I e i (ICd t hat b y U Sing suCh A mie thod to0 inlterse ct

fi rst comp I emerit., ofI r cii o rceme olt, S;Ct s , and( thenl thle set s tiic:sves"),

a subject neeeud )r mos t ) i t esini Memory per problem. Wi th two prOh-

1 ems ait onice , lie, necded at mlo:;t 10, h)It sinrce tile feedlvil % Sets Onl each

proh Iem were i idepe~ndcin thle like 1liood of' rothI p-oh Iems hayviug max imuni

paice A once wa,; low. Thins for the most part allI relevant in formatitonl

coiul1( le storedl in fewer it ems than thre 7 or 8 geneurallv estiniated as

ma-xi miu for short -term memory.
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A MICROSTUDY OF HUMAN INFODkMATION-SEPING BET-lAy OR

T. !NTRODUCTTON

Learning may ha considered to he the utilization of infotmatLon

in order to change one's belilefs concerning the opti-mality of each one

of a set of possible responses. This information mayv be of a partic-

ularly simple sort; in paired-associate learning, for example, after

each trial when there is a correcti a procedure the subject is given

complete information concerning the correctness of each response. In

a recent paper by Jamnison, Lhamo,, andl Supnes [81 a number of paired-Iassociate learning situations in which much riclior inforilmation struc-

tures could he analyzed were modeled and dls, rssed . In the cord' udinA7

s e . io n (f that paper the alternative tvpes oC information that canl ho,

used to inf Luence learning wer, c!aregorized and d iscussed in terms of

the way in which the information does affect the learning pro-ess. Mv

purpose in this section is to look In i verv simple way aL adding one

fiir th or c )Tr - lis ,nalv-is: that further complication I,-

introduced hrv the poss il 1itv ()f huving in format fon. Mhien informat i onl

is not free the c lass of dlec isions t'iat tho decision maker is confronted(

with Is vast ly inc reased as hie muist dec ide on how much and what type of

information to purchase. The experiment to he described I- a natural

follow-on to one reported in a study by Keller, Cole, Blurke, and FEstes

[9]. It i~i thus worth briefly recalling their procedure.

The Kellecr, Cole, Burke, and Estes paper anailyzes inlformIMon

structures that are much richer than that of ordinary pat red-,issoc late



-199-

learnim, no - bol the t vpe o infrmia .. I oriicturn tat they analy;ze

is quite different from those analyzed in Jamison, Lhawrio, and Suppes.

In Keller, et al., there were two groupE of subjects, each of which

was faced with a palred-assoclate list of 25 items. There were two

possible responses to each item, and to each response there was as-

signed a point value that had a numericr1 value between I and 8. At

the ouLset of the exoeriment the subjects did not know the point value

of any of the responses; their pay at the end of the experiment was

directly proportional to the total number of points that they accumu-

lated during the experimenta' session. Thev accumulated points for

each response thev made; that is, they received on each response the

poinL value of that response. The two experimental conditions were

these. Tn the first, after the subiect resporn.dd he was told that the

point value of both the response he had made arid the alternative re-

sponse. that is, he was ,,even complete information about what tie op-

timal -esponse was. I the second cxper[mental condition the subject

was given the point value onlv of the response that he had made. Thus

unless he rereived :n 8 ,,r 1. the malt,nim or minimum poss 1ile, he was

SI rin ,s , woe, er t he response he had ;e] ected would be, inr fact,

pLh,,a I. The primary l>,lrpse( of Kel le; et al. , was to ,xani!ne how both

the information value of th,, reinforcement and its ro,''rd value affe-t

the subject's performance. in this stiudv I focus on a single aspect 2f

their results, that Is, that of how the ;uhiect decides about whether

or not to acquire information concerning another risponse when I.- al-

ready has a high reward value, say 6, as a result of hi, first re;pon.se.

1his is an issue that arises clearly In their data. It turns out that
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wien the two reward values associated with the two response alterna-

tires are, say, 6 and 8, then occasionally if the subject first responds

with the alternative having the value of 6, he may never learn that the

correct response is 8. It is implied that this is a failure of the

subject to properly learn the material at hand; an alternative inter-

pretation, to be developed below, is simply that the cost of switching

to look at the other value is simply too high for the subject in terms

of its expected value. In order to isolate how subjects behave when

faced with choices about buying information the experiment described

below attempts to provide a task in which the learning problem is so

simple that it need not be analyzed. in effect, it is a rerun of the

Kellar, et al., experiment with a single stimulus item instead of a

list of 25 items.

The problem to be investigated concerns, then, how the value of

the response alternative that the subject knows affects his decision

concerning whether or not to look at the other alternative and how the

expected number of remaining trials affects that decision. This last

was not a variable explicitly considered in Keller, et al.; it is a

variable explicitly given to the subject in the experiment described

below. Before describing the method of the experiment, a brief theo-

retical development will be required.

II. THEORETICAL DEVELOPMENT

The basis of the theoretical model to be described below is the

assumption that the subject is trying to maximize his expected total

point value against an "oblective" probability distribution that he
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knows. (This could be generalized to allow for a utility function

nonlinear in points and a subjective probability distribution.) The

subject is shown a card with a point value, R, between 50 and 100 on

the front and a number, N, that indicates the number of trials remain-

ing. He can then elect to do one of two thngs--stay or switch. If

he stays, the number of points he receives is R for each trial, i.e.,

a total of NF, If he switches he will receive on the first trial a

point value randomly clhosen between 0 and 100; this point value is

written on the back of the card and, for the remaining N-1 trials, he

receives the larger of the point values written on the front and back

of the card. The analogy between this and the Keller, et al., experi-

ment is obvious. Since his expected value for the first trial is 50

points (assuming a symmetrical distribution) by switching he gives up

the difference between 50 and what he knows for certain he can obtain

from the value on the front of the card. He does so in the hope that

the number on the back of the card is sufficiently greater than the

number on the front so that the expected loss can be made up in the

remaining N-1 trials.

Under what circumstances should the subject switch, assuming max-

imization of expected point value? Let V be the expected point value
i

of switching and Vs be the expected value of staving. G = Vi - Vs is

the expected gain from switching; the subject should switch if G > 0.

As previously noted, V = NR. V will depend on the distribution of
s i

the point value on the back of the card. In the experiment we used a

uniform distrilbution and I will. make that asstimption here; Peneraliza-V I [on to an arbitrarv distributicr is straightforwaid. Let p be the

probab i1 i Ly of i mprovi ru if you swi tch and R be the expected point
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4aw rt te p~ the car ie tt it i s An-7, imrrvvcet- ovEr tufe

f ro n t 'I!- i , sd hr e the a o T.ssnt ion o f u in iform cit trI LIt i 01n is USell

n 1 RiCO 1 A R =5n +

We can now express V.in t!s tcp erms,

V. 5 0 -4. 1 - ( - ) + R ( )

The 53, is the exr'ec ted value of thle fiist trial with rrobabi 1i tv -

the subal&L loesn 't improve and hence receivres (N-l or pints; with

probabilitv p he does imoroe an(, receives (N-P R more poi-nts, TNv

substitution it is now possible to express N in ter!.s only of R and G~,

the expected g-ain from switching:

N G - 2+2R IMO2.(1
1 00

(100--R)

Byn set t lg G = 0I we obtain a rel at ion between N and R Such tha-t: the

suject snoul d ho, indif ferent about swi tcbinp. This r;elati.onship is

graphed ti Fi gure 1, above' th, 1line he shoul1( switch and be low it he

should not.

Insert Figure I About Here.

In tl \ perlinen t to be dlescribhed we selected a number oif diis-

crete t u'of G (rangi from -I) to 10), put then'i Into Fciu.ot ion I,

:1111 eompu )1t(d ;I nbe br of N, R pa iirs consisten t wit h t h,-t v~ ih

The by '.i thbit t he obs.,erve! jprebsd ilit ' ot \swil t'l cl ' tL!b



-203-

35

30

25 RegionI

20 Switching desirable

15
G=0

10 -Region I
Switching undesirable

5

0
.50 60 70 20 90 100

R -*

FIG. I-REGIONS IN WHICH SWVITCHING IS DESIRABLE AND UNDESIRABLE



-204-

simple monotonicailv increasing function of G. '1hough our expriment

failed to bear out this hope, the probability of switching did tend to

increase with increasing G.

It is perhaps worth r-aking one final comm.ent concerning the results

o Keller, et al. From the rapid rise in the curve on Figure 1, it is

perhaps not surprising that subjects would get locked into a 6 response

when the alternative had a point value of 8. This situation would cor-

respond rougnly to a point value of 75 in the schema depicted in Figure

1. For switching to be optimal in these circumstances the subject

would have to expect at least 9 more trials with that stimulus item

prior to the end of the experiment.

III. METHOD

The expe-iment was run in the spring of 1969 with 29 female under-

graduates from Boston University as subjects. They participated on a

voluntary basis and were given no pay nor were they satisfying any

course requirements. Each subjept attended one experimental session

of approximately 20-30 minutes duration. Each subject was presented

with 36 cards and shown the front of each card. On the front were '-o

numbers, one designated N and the other V. The subjects were told N

was the number of trials remaining and that V was the point value of

staying with the number on th- front of the card. The subjects were

told they :'ould, if they wished, switch and see the number on the back

of the card. If that number were higher than the number on the froii!:

of the card, they would receive that for the remaining N trials. if,

on the other hand, the number on the front of the carl were higli r,
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they would receive the number on the back of the card for the first

trial and the number on the f,:xnt for the remaining N-i trials. They

were to]d that the numbers on the back of the card would be uniformly

distributed between 0 and 100. The meaning of "uniform distribution"

was carefully explained in intuitive terms. They were told that their

objective was to trv to maximize the total number of points they accu-

mulated over the 36 cards. It was further explained to them in some

detail considerations thaL might lead them to wish to switch or not

switch, that is, a high point value was explained to be a pressure not

to switch and a large N value was explained to be a pressure to switch.

These points were expla.ned until the subject showed an understanding

of the considerations involved; that is, the subject realized that by

switching they were sacrificing some points in the short term in order

to take advantage of the possibility of receiving more points in the

longer term.

Table 1 shows the N and V values of the 16 cards. The N and V

values were chosen to cluster around each of -, number of different G

values between -15 and +10. The G values represented were -15, -10,

-8, -5, -2, 0, 2, 5, 8, and 10. Each C value was represented by from

three to five cards. All subjects were shoucn the same cards and each

subject responded once to each card.

V. RESULTS

Table I also shows the results for the experiment on a card-by-

card basis. The final column of Table 1 sh'ws the percentage of the

subject, who switched for each card. These results are shown in a
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Table 1

PERCENTAGE OF SUBJECTS SWITCHING

N V % Switch N V % Switch

1 65 17 1 52 52
3 70 21 3 63 52
8 75 31 4 63 52
4 75 34 3 58 52
2 70 34.5 3 68 55
8 80 38 1 58 55
1 60 38 2 58 55
10 80 42 2 55 55
6 74 42 3 60 55

6 75 45 1 55 58
7 75 45 2 60 58
3 65 45 9 75 58
4 70 48 7 73 62
6 70 48 8 73 62
4 65 48 1 50 65.5
2 52 48 2 50 65.5
2 64 52 5 65 65.5
5 70 52 7 70 69

more meaningful form in !able 2. There the percentage that switched

averaged across cards for each G value is shown listed against the

various G values. It is clear from Table 2 that the probabilit, of

switching, or the mean switchi.ng value, is not related in a vez:V clear

and systematic way to the G value as would be predicted from a theory

based on maximization of expected point value. Nevertheless, it is

also clear that the expected point value of switching, that is, the

G value, does influence the probability of switching; for those G

values less than zero, the average probability of switching was .41.

For those G values above zero, the average probability of switching

was .56. Nevertheless, it is clear that there is considerable erratic

and, as yet, unexplained variation within numbers given in Table 2.
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Table 2

PERCENTAGE SWITCHING RELATED TO GAIN

Gain, G Switching

-15 (4)a  31
-10 (4) 36
- 8 (4) 51
- 5 (3) 50
- 2 (5) 48

0 (3) 62
2 (3) 52
5 (4) 55
8 (3) 57

10 (3) 61

aThe number in parenthesis is the
number of cards having N,V values that
give the G value indicated. Thus the
total of the numbers in parenthesis is
36.

The primary results of this experiment are to show that it is

possible to analyze information-seeking behavior in a simple micro-

task, chough as yet, there is not a clear theory to explain the re-

sult.s. Nevertheless, the results do appear to be at least influenced

by the expected point value of the information to be obtained. The

problem now is to look at other influences that might be affecting

switching behavior, such as: curiosity, undue attention to the rple-

vant point vilue of the alternative given at present, undue attention

to the number of remaining trinls, and simple random components.
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